Real-Time Workshop® 7
Reference

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop Reference
© COPYRIGHT 2006-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

March 2006 Online only
September 2006 Online only
March 2007 Online only

September 2007 Online only

New for Version 6.4

Revised for Version 6.5 (Release 2006b)
Revised for Version 6.6 (Release 2007a)
Revised for Version 7.0 (Release 2007b)

Functions — By Category

Build Information, 1-2
Embedded MATLAB Coder 1-4
Project Documentation 1-5
Rapid Simulation 1-5
Target Language Compiler Library 1-5

Functions — Alphabetical List

2

Simulink Block Support

3

Blocks — By Category

q |

Custom Code 4-2

Interrupt Templates 4-3

vi

Contents

Blocks — Alphabetical List

5

Configuration Parameters

6

Real-Time Workshop Pane: General 6-3
General Tab Overviewccviiiinnennnn.. 6-5
System targetfile, 6-6
Languageiiiiiiiiiiii i e e 6-8
Generate HTML report 6-9
Launch report automatically 6-11
Code-to-block highlighting 6-13
Block-to-code highlighting 6-15
Configurettt i 6-17
Compiler optimizationlevel 6-18
Custom compiler optimization flags 6-20
TLC optionsoiiiiiiii ittt e e e 6-21
Generate makefile i L. 6-23
Make commandi i e 6-25
Template makefile 6-27
Ignore custom storageclasses 6-29
Generatecodeonly 6-31
Build/Generatecode i, 6-33

Real-Time Workshop Pane: Comments 6-34
Comments Tab Overview 6-36
Include comments i i, 6-37
Simulink block comments 6-38
Show eliminated blocks 6-39
Verbose comments for SimulinkGlobal storage class 6-40
Simulink block descriptions 6-41
Simulink data object descriptions 6-43

Custom comments (MPT objectsonly) 6-44

Custom comments function 6-46
Stateflow object descriptions 6-48
Requirements in block comments 6-50
Real-Time Workshop Pane: Symbols 6-52
Symbols Tab Overviewcciiiiiinunnne... 6-54
Global variables i 6-55
Global typesiviiii it i e e 6-57
Field name of global types it 6-60
Subsystem methods 6-62
Local temporary variables 6-65
Local block output variables 6-67
Constant macrosoiiiiiiiiennnennnn.. 6-69
Minimum manglelength 6-71
Maximum identifierlength 6-73
Generate scalar inlined parameteras 6-75
Signal namingc..iiiitttinnnninenen.. 6-76
M-functionc.ciiiiiiiiiiiiiiee i 6-78
Parameter naming i i, 6-80
#definenamingciiiiiiiiieernnnnnnnn 6-82
Real-Time Workshop Pane: Custom Code 6-84
Custom Code Tab Overviewc.o.... 6-86
Sourcefile e 6-87
Headerfile i 6-88
Initialize function, 6-89
Terminate function 6-90
Include directoriesco i 6-91
Sourcefilesco i . 6-92
Librariesiiiiiiiii i e e e 6-93
Real-Time Workshop Pane: Debug 6-94
Debug Tab Overviewcoiiiiieennnnnnnnns 6-96
Verbosebuild 6-97
Retain .rtwfile i 6-98
Profile TLC i i e et e i 6-99
Start TLC debugger when generating code 6-100
Start TLC coverage when generatingcode 6-101
Enable TLC assertionc0iuiiiiinnnnnnn. 6-102
Real-Time Workshop Pane: Interface 6-103

vii

viii

Contents

Interface Tab Overview,
Target function library
Utility function generation
Support: floating-point numbers
Support: absolutetime,
Support: non-finite numbers
Support: continuous time 0. ...
Support: complex numbers,
Support: non-inlined S-functions
GRT compatible call interface
Single output/update function
Terminate function required
Generate reusablecode,
Reusable code error diagnostic
Passroot-level I/Oas
Suppress error status in real-time model data structure ..
Configure Functions oo,
Create Simulink (S-Function) block
Enable portable word sizest
MATHfileloggingcciiiiiniiiiiiie i
MAT-file variable name modifier
Interface i
Signalsin CAPI
Parametersin CAPI
Transport layerc. it
MEX-file arguments00iiiiiiiiiiinann
Static memory allocation
Static memory buffersize

Real-Time Workshop Pane: RSim Target
RSim Target Tab Overviewccciiiiinnnnn.
Enable RSim executable to load parameters from a

MATHAlE vttt e e et e
Solver selection
Force storage classes to AUTO

Real-Time Workshop Pane: Real-Time Workshop
S-Function Code Generation Options
Real-Time Workshop S-Function Code Generation Options

Tab OVerviewttt iiie e
Createnewmodel
Use value for tunable parameters

Real-Time Workshop Pane: Tornado Target
Tornado Target Tab Overview
Target function library
Utility function generation
MATHfile loggingcciiiiiiiiiiii i
MAT-file variable name modifier
CodeFormat
StethoScopeo e
Download to VxWorks target
Basetask priority i e i
Task stack sizeo
Externalmode i
Transport layerc. i
MEX-file arguments0iiiiiiiiiiinnann
Static memory allocation
Static memory buffersize

Parameter Reference
Recommended Settings Summary
Parameter Command-Line Information Summary

Embedded MATLAB Coder Configuration
Parameters

7

Real-Time Workshop Dialog Box for Embedded
MATLAB Coderutiiiiiiiiiiiieennnnn.
Real-Time Workshop Dialog Box Overview
General Tab i,
Symbols Tab i,
CustomCodeTabciiiiiiiinninnnn...
DebugTab i
Interface Tab i,
Generatecodeonly

Automatic C MEX Generation Dialog Box for Embedded

MATLAB Coderutiiiiiiiiiiiieennnnn.
Automatic C MEX Generation Dialog Box Overview
General Tab i,
CustomCodeTabcoiiiiiiiinnininnn...

ix

X

Contents

Hardware Implementation Dialog Box for Embedded

MATLABCoderttt 7-21
Hardware Implementation Parameters Dialog Box

OVeIVIEW & ittt ittt ettt e 7-21
Hardware Implementation Parameters 7-22

Model Advisor Checks

8

Real-Time Workshop Checks 8-2
Real-Time Workshop Overview 8-3
Check solver for code generation 8-4
Identify questionable blocks within the specified system .. 8-6
Check for model reference configuration mismatch 8-7
Check the hardware implementation 8-8
Identify questionable software environment

specifications i i 8-10
Identify questionable code instrumentation (data I/O) 8-12
Check for blocks that have constraints on tunable

parameters e e e e 8-13
Identify questionable subsystem settings 8-15
Identify blocks that generate expensive saturation and

roundingcode e e 8-16
Check sample times and taskingmode 8-17
Identify questionable fixed-point operations 8-18

Index

Functions — By Category

Build Information (p. 1-2)

Embedded MATLAB Coder (p. 1-4)

Project Documentation (p. 1-5)
Rapid Simulation (p. 1-5)

Target Language Compiler Library
(p. 1-5)

Set up and manage model’s build
information

Generate embeddable C code or C
MEX code from M-file

Document generated code
Get model’s parameter structures

Optimize code generated for model’s
blocks

l Functions — By Category

Build Information

addCompileFlags

addDefines

addIncludeFiles

addIncludePaths

addLinkFlags

addLinkObjects

addSourceFiles

addSourcePaths

findIncludeFiles

getCompileFlags

getDefines

getIncludeFiles

getIncludePaths

getLinkFlags

getSourceFiles

Add compiler options to model’s
build information

Add preprocessor macro definitions
to model’s build information

Add include files to model’s build
information

Add include paths to model’s build
information

Add link options to model’s build
information

Add link objects to model’s build
information

Add source files to model’s build
information

Add source paths to model’s build
information

Find and add include (header) files
to build information object

Compiler options from model’s build
information

Preprocessor macro definitions from
model’s build information

Include files from model’s build
information

Include paths from model’s build
information

Link options from model’s build
information

Source files from model’s build
information

Build Information

getSourcePaths

packNGo

updateFilePathsAndExtensions

updateFileSeparator

Source paths from model’s build
information

Package model code in zip file for
relocation

Update files in model’s build
information with missing paths and
file extensions

Change file separator used in model’s
build information

l Functions — By Category

Embedded MATLAB Coder

emlc Generate C code or C MEX code
directly from M-code

14

Project Documentation

Project Documentation

rtwreport Document generated code

Rapid Simulation

rsimgetrtp Model’s global parameter structure

Target Language Compiler Library

See the “TLC Function Library Reference” in the Real-Time Workshop Target
Language Compiler documentation.

1-5

l Functions — By Category

1-6

Functions — Alphabetical
List

addCompileFlags

Purpose

Syntax

Arguments

Add compiler options to model’s build information

addCompileFlags(buildinfo, options, groups)

groups is optional.

buildinfo
Build information returned by RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies
the compiler options to be added to the build information. The
function adds each option to the end of a compiler option vector. If
you specify multiple options within a single character array, for
example '-Zi -Wall', the function adds the string to the vector
as a single element. For example, if you add '-Zi -wall' and
then '-03', the vector consists of two elements, as shown below.

'.7i -Wall' '.03"

groups (optional)
A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

® Document the use of specific compiler options

® Retrieve or apply collections of compiler options

You can apply
® A single group name to a compiler option
® A single group name to multiple compiler options

e Multiple group names to collections of compiler options

addCompileFlags
|

To... Specify groups as a...

Apply one group Character array. To specify compiler
name to all compiler options to be used in the standard
options Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS"'.

Apply different group Cell array of character arrays such that

names to compiler the number of group names matches

options the number of elements you specify for
options. Available for nonmakefile
build environments only.

Note To control compiler optimizations for your Real-Time
Workshop makefile build at Simulink GUT level, use the
Compiler optimization level option on the Real-Time
Workshop pane of the Simulink Configuration Parameters dialog
box. The Compiler optimization level option provides

¢ Target-independent values Optimizations on (faster runs)
and Optimizations off (faster builds), which allow you
to easily toggle compiler optimizations on and off during code
development

® The value Custom for entering custom compiler optimization
flags at Simulink GUI level (rather than at other levels of the
build process)

If you specify compiler options for your Real-Time Workshop
makefile build using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"),
or MEX_OPT_FILE, the value of Compiler optimization level is
ignored and a warning is issued about the ignored parameter.

Description The addCompileFlags function adds specified compiler options to the
model’s build information. Real-Time Workshop stores the compiler

addCompileFlags

Examples

options in a vector. The function adds options to the end of the vector
based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

¢ Add the compiler option -03 to build information myModelBuildInfo
and place the option in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, '-03', 'MemOpt');

¢ Add the compiler options -Zi and -Wall to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-Zi -Wall', 'Debug');

addCompileFlags

See Also

¢ Add the compiler options -Zi, -Wall, and -03 to build information
myModelBuildInfo. Place the options -Zi and -Wall in the group
Debug and option -03 in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, {'-Zi -Wall' '-03'},
{'Debug' 'MemOpt'});

addDefines, addLinkFlags
“Programming a Post Code Generation
Command”

addDefines

Purpose Add preprocessor macro definitions to model’s build information

Syntax addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

macrodefs
A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object. The
function adds each definition to the end of a compiler option vector.
If you specify multiple definitions within a single character array,
for example ' -DRT -DDEBUG', the function adds the string to the
vector as a single element. For example, if you add ' -DPROTO
-DDEBUG' and then '-DPRODUCTION', the vector consists of two
elements, as shown below.

' -DPROTO -DDEBUG' ' -DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups
specified definitions. You can use groups to

® Document the use of specific macro definitions

® Retrieve or apply groups of macro definitions

You can apply
® A single group name to an macro definition
* A single group name to multiple macro definitions

® Multiple group names to collections of multiple macro
definitions

addDefines

Description

Examples

To... Specify groups as a...

Apply one group Character array. To specify macro
name to all macro definitions to be used in the standard
definitions Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS"'.

Apply different group Cell array of character arrays such that

names to macro the number of group names matches

definitions the number elements you specify for
macrodefs. Available for nonmakefile
build environments only.

The addDefines function adds specified preprocessor macro definitions
to the model’s build information. Real-Time Workshop stores the
definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you
can use an optional groups argument to group your options.

® Add the macro definition -DPRODUCTION to build information
myModelBuildInfo and place the definition in the group Release.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPRODUCTION', 'Release');

® Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPROTO -DDEBUG', 'Debug');

addDefines

See Also

® Add the compiler definitions -DPROTO, -DDEBUG, and -DPRODUCTION,

to build information myModelBuildInfo. Group the definitions

-DPROTO and -DDEBUG with the string Debug and the definition
-DPRODUCTION with the string Release.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo, {'-DPROTO -DDEBUG'
' -DPRODUCTION'}, {'Debug' 'Release'});

addCompileFlags, addLinkFlags
“Programming a Post Code Generation Command”

addincludeFiles

Purpose Add include files to model’s build information

Syntax addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies
names of include files to be added to the build information. The

function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that
® You specify as input
¢ Already exist in the include file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.
paths (optional)
A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.
groups (optional)
A character array or cell array of character arrays that groups
specified include files. You can use groups to
® Document the use of specific include files

® Retrieve or apply groups of include files

addincludeFiles

2-10

Description

You can apply

® A single group name to an include file

® A single group name to multiple include files

e Multiple group names to collections of multiple include files

TO...

Apply one group name
to all include files

Apply different group
names to include files

Specify groups as a...

Character array.

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

The addIncludeFiles function adds specified include files to the
model’s build information. Real-Time Workshop stores the include files
in a vector. The function adds the filenames to the end of the vector in

the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character

arrays.

If You Specify an Optional
Argument as a...

Character array

Cell array of character arrays

The Function...

Applies the character array to all
include files it adds to the build
information

Pairs each character array with a
specified include file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

addincludeFiles
|

If you choose to specify groups, but omit paths, specify a null string
('") for paths

Examples ¢ Add the include file mytypes.h to build information
myModelBuildInfo and place the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
‘'mytypes.h', 'SysFiles');

¢ Add the include files etc.h and etc_private.h to build information
myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h'}, 'AppFiles');

¢ Add the include files etc.h, etc_private.h, and mytypes.h to
build information myModelBuildInfo. Group the files etc.h and
etc_private.h with the string AppFiles and the file mytypes.h
with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h' 'mytypes.h'},...
{'AppFiles' 'AppFiles' 'SysFiles'});

See Also addIncludePaths, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-11

addincludePaths

Purpose Add include paths to model’s build information

Syntax addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies

include file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

® You specify as input

¢ Already exist in the include path vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)
A character array or cell array of character arrays that groups
specified include paths. You can use groups to

® Document the use of specific include paths

¢ Retrieve or apply groups of include paths

You can apply
® A single group name to an include path
® A single group name to multiple include paths

e Multiple group names to collections of multiple include paths

2-12

addincludePaths
|

To... Specify groups as a...

Apply one group Character array.

name to all include

paths

Apply different group Cell array of character arrays such that
names to include the number of group names that you
paths specify matches the number of elements

you specify for paths.

Description The addIncludePaths function adds specified include paths to the
model’s build information. Real-Time Workshop stores the include
paths in a vector. The function adds the paths to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
include paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the
length of the cell array must match
the length of the cell array you specify
for paths.

2-13

addincludePaths

Examples ® Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths (myModelBuildInfo,...
"/etcproj/etc/etc_build');

® Add the include paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'},'etc');

® Add the include paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/1lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-14

addLinkFlags
|

Purpose Add link options to model’s build information

Syntax addLinkFlags (buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies
the linker options to be added to the build information. The
function adds each option to the end of a linker option vector. If
you specify multiple options within a single character array, for
example '-MD -Gy', the function adds the string to the vector as a
single element. For example, if you add ' -MD -Gy' and then '-T"',
the vector consists of two elements, as shown below.

'-MD -Gy' LT

groups (optional)
A character array or cell array of character arrays that groups
specified linker options. You can use groups to

® Document the use of specific linker options

® Retrieve or apply groups of linker options

You can apply
® A single group name to a compiler option
® A single group name to multiple compiler options

® Multiple group names to collections of multiple compiler options

2-15

addLinkFlags

To... Specify groups as a...

Apply one group Character array. To specify linker
name to all linker options to be used in the standard
options Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS".

Apply different Cell array of character arrays such that
group names to the number of group names matches
linker options the number of elements you specify for

options. Available for nonmakefile
build environments only.

Description The addLinkFlags function adds specified linker options to the model’s
build information. Real-Time Workshop stores the linker options in a
vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples ® Add the linker - T option to build information myModelBuildInfo and
place the option in the group Temp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-T','Temp');

¢ Add the linker options -MD and -Gy to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, '-MD -Gy', 'Debug');

2-16

addLinkFlags

¢ Add the linker options -MD, -Gy, and -T to build information
myModelBuildInfo. Place the options -MD and-Gy in the group Debug
and the option -T in the groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'Temp'});

See Also addCompileFlags, addDefines
“Programming a Post Code Generation
Command”

2-17

addLinkObjects

Purpose Add link objects to model’s build information

Syntax addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , 1inkobjs, and paths are optional. If

you specify an optional argument, you must specify all of the optional
arguments preceding it.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

linkobjs
A character array or cell array of character arrays that specifies
the filenames of linkable objects to be added to the build
information. The function adds the filenames that you specify
in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to the
vector based on the order in which you specify the object filenames
in the cell array.

The function removes duplicate link objects that

® You specify as input

¢ Already exist in the linkable object filename vector

* Have a path that matches the path of a matching linkable
object filename

A duplicate entry consists of an exact match of a path string and

corresponding linkable object filename.

paths

A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

2-18

addLinkObjects

priority (optional)
A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

linkonly (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be only linked. If
you set this argument to false, the function also adds a rule to
the makefile for building the objects.

groups (optional)
A character array or cell array of character arrays that groups
specified link objects. You can use groups to

® Document the use of specific link objects

® Retrieve or apply groups of link objects

You can apply
* A single group name to a linkable object
® A single group name to multiple linkable objects

e Multiple group name to collections of multiple linkable objects

To... Specify groups a...
Apply one group Character array.
name to all link

objects

Apply different group Cell array of character arrays such that

names to link objects the number of group names matches
the number elements you specify for
linkobjs.

2-19

addLinkObjects

Description The addLinkObjects function adds specified link objects to the model’s
build information. Real-Time Workshop stores the link objects in a
vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to
the vector based on the order in which you specify them.

In addition to the required buildinfo, 1inkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled,
linkonly, and groups. You can specify paths and groups as a character
array or a cell array of character arrays.

If You Specify paths or The Function...
groups as a...

Character array Applies the character array to
all objects it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length
of the cell array must match the
length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and 1inkonly as a
value or vector of values.

If You Specify priority, The Function...
precompiled, or linkonly

as a...

Value Applies the value to all objects it adds
to the build information.

Vector of values Pairs each value with a specified

object. Thus, the length of the vector
must match the length of the cell
array you specify for 1inkobjs.

2-20

addLinkObjects
|

If you choose to specify an optional argument, you must specify all of
the optional arguments preceding it. For example, to specify that all
objects are precompiled using the precompiled argument, you must
specify the priority argument that precedes precompiled. You could
pass the default priority value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

Examples ¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10,
respectively. Since 1ibobj2 is assigned the lower numeric priority
value, and thus has the higher priority, the function orders the
objects such that 1ibobj2 precedes 1ibobj1 in the vector.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1lib1"' '/proj/lib/1ib2'}, [26 10]);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo. Mark both objects as linkable. Since priorities
are not specified, the function adds the objects to the vector in the
order specified.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1ib1"' '/proj/lib/1ib2'}, [26 10],...

false, true);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10,
respectively. Mark both objects as precompiled, but not linkable,
and group them MyTest.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1lib1"' '/proj/lib/1ib2'}, [26 10],...

true, false, 'MyTest');

2-21

addLinkObjects

See Also “Programming a Post Code Generation Command”

2-22

addSourceFiles

Purpose Add source files to model’s build information

Syntax addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies
names of the source files to be added to the build information. The

function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that
® You specify as input
¢ Already exist in the source file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)

A character array or cell array of character arrays that groups
specified source files. You can use groups to

® Document the use of specific source files

® Retrieve or apply groups of source files

2-23

addSourceFiles

2-24

Description

You can apply
® A single group name to a source file
® A single group name to multiple source files

¢ Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name Character array.
to all source files

Apply different group Cell array of character arrays such

names to source files that the number of group names that
you specify matches the number of
elements you specify for filenames.

The addSourceFiles function adds specified source files to the model’s
build information. Real-Time Workshop stores the source files in a
vector. The function adds the filenames to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character
arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
source files it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

addSourceFiles

If you choose to specify groups, but omit paths, specify a null string
('") for paths

Examples ¢ Add the source file driver.c to build information myModelBuildInfo
and place the file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, 'driver.c', '',...
'‘Drivers');

e Add the source files test1.c and test2.c to build information
myModelBuildInfo and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c'}, '', 'Tests');

® Add the source files test1.c, test2.c, and driver.c to build
information myModelBuildInfo. Group the files test1.c and
test2.c with the string Tests and the file driver.c with the string
Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, '',...
{'Tests' 'Tests' 'Drivers'});

See Also addIncludeFiles, addIncludePaths, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-25

addSourcePaths

Purpose Add source paths to model’s build information

Syntax addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.
The function removes duplicate source file entries that
® You specify as input
¢ Already exist in the source path vector
¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note Real-Time Workshop does not check whether a specified
path string is valid.

groups (optional)
A character array or cell array of character arrays that groups
specified source paths. You can use groups to

® Document the use of specific source paths

® Retrieve or apply groups of source paths

2-26

addSourcePaths
|

You can apply
¢ A single group name to a source path
* A single group name to multiple source paths

¢ Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name Character array.
to all source paths

Apply different group Cell array of character arrays such

names to source paths that the number of group names that
you specify matches the number of
elements you specify for paths.

Description The addSourcePaths function adds specified source paths to the model’s
build information. Real-Time Workshop stores the source paths in a
vector. The function adds the paths to the end of the vector in the order
that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
source paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the
length of the character array or cell
array must match the length of the
cell array you specify for paths.

2-27

addSourcePaths

Note Real-Time Workshop does not check whether a specified path
string is valid.

Examples ¢ Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
"/etcproj/etc/etc_build');

¢ Add the source paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths (myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

® Add the source paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/1ib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-28

emlc

Purpose Generate C code or C MEX code directly from M-code
Syntax emlc [-options] [files] fcn

Description emlc invokes the Embedded MATLAB Coder from the MATLAB
command prompt.

emlc [-options] [files] fcn translates the M-file fen.mto a C MEX
file or to embeddable C code, depending on the target you specify as an
option on the command line (see “-T Specify Target” on page 2-36 in
“Options” on page 2-29). If you generate embeddable C code, you can
specify custom files to include in the build, as described in “Specifying
Custom C Files on the Command Line” in the Real-Time Workshop
documentation.

By default, emlc fcn does the following:

¢ Converts the M-function fern.m to a C MEX function
® Generates a platform-specific MEX file in the current directory

® Generates the necessary wrapper files — such as C, header, object,
and map files — in the subdirectory emcprj/ mexfcn/fen/

You can change the default behavior by specifying one or more
compilation options as described in “Options” on page 2-29.

Options You can specify one or more compilation options with each emlc
command. Use spaces to separate options and arguments. Embedded
MATLAB Coder resolves options from left to right, so if you use
conflicting options, the rightmost one prevails. Here is the list of emlc
options:
e “c Generate Code Only” on page 2-30
e “.d Specify Output Directory” on page 2-30
e “.eg Specify Input Properties by Example” on page 2-31

2-29

emlc

2-30

o “F Specify Default fimath” on page 2-31

e “g Compile C MEX Function in Debug Mode” on page 2-32
e “J Add Directories to Embedded MATLAB Path” on page 2-32
e “_N Specify Default Numeric Type” on page 2-32

® “.0 Specify Output File Name” on page 2-33

® “.0 Specify Compiler Optimization Option” on page 2-33

e “report Generate Compilation Report” on page 2-34

e “.g Specify Configuration Properties” on page 2-34

o “.T Specify Target” on page 2-36

e “.v Show Compilation Steps” on page 2-37

e “.? Display Help” on page 2-37

-c Generate Code Only

Generate code, but do not invoke the make command. Embedded
MATLAB Coder does not compile the M-code or build a C code
executable. Use this option only for rtw, rtw:exe, and rtw:1ib targets
(see “-T Specify Target” on page 2-36).

-d Specify Output Directory
-d out_directory

Store generated files in directory path specified by out_directory. If any
directories on the path do not exist, Embedded MATLAB Coder creates
them for you. out_directory can be an absolute path or relative path.

If you do not specify an output directory, Embedded MATLAB Coder
stores generated files in a default subdirectory:

emcprj/target/function

target represents the compilation target type, specified as follows:

emlc

Target Type target Subdirectory
default mexfcn
-T MEX mexfcn
-T RTW:EXE rtwexe
-T RTW:LIB rtwlib

Note To specify a compilation target type, see “-T Specify Target” on
page 2-36.

-eg Specify Input Properties by Example
-eg example_inputs

Use the values in cell array example_inputs as sample inputs for
defining the properties of the primary M-function inputs. The cell array
should provide the same number and order of inputs as the primary
function. See “Defining Input Properties by Example at the Command
Line” .

-F Specify Default fimath
-F fimath

Use fimath as the default fimath object for all fixed-point inputs to
the primary function. You can define the default value using the
Fixed-Point Toolbox fimath function, as in this example:

emlc -F fimath('OverflowMode', 'saturate', 'RoundMode’', 'nearest')

Embedded MATLAB Coder uses the default value if you have not
defined any other fimath property for the primary, fixed-point inputs,
either by example (see “Defining Input Properties by Example at the
Command Line”) or programmatically (see “Defining Input Properties
Programmatically in the M-File”). If you do not define a default value,
then you must use one of the other methods to specify the fimath
property of your primary, fixed-point inputs.

2-31

emlc

2-32

-g Compile C MEX Function in Debug Mode

Compile the C MEX function in debug mode, with optimization turned
off. Applies only to C MEX generation. If you do not specify -g,

emlc compiles the C MEX function in optimized mode. You specify
these modes using the mex -setup procedure described in “Building
MEX-Files” in the online MATLAB External Interfaces documentation.

-1 Add Directories to Embedded MATLAB Path
-1 include_path

Add include_path to the Embedded MATLAB path. By default, the
Embedded MATLAB path consists of the current directory (pwd) and the
Embedded MATLAB libraries directory. emlc searches the Embedded
MATLAB path first when converting M-code to C code. See “File Paths
and Naming Conventions”.

-N Specify Default Numeric Type
-N numerictype

Use numerictype as the default numerictype object for all fixed-point
inputs to the primary function. You can define the default value using
the Fixed-Point Toolbox numerictype function, as in this example:

emlc -N numerictype(1,32,23) myFcn

This command specifies that the numeric type of all fixed-point inputs
to the top-level function myFcn be signed (1), have a word length of 32,
and have a fraction length of 23.

Embedded MATLAB Coder uses the default value if you have not
specified any other numerictype for the primary, fixed-point inputs,
either by example (see “Defining Input Properties by Example at the
Command Line”) or programmatically (see “Defining Input Properties
Programmatically in the M-File”). If you do not define a default value,
then you must use one of the other methods to specify the numerictype
of your primary, fixed-point inputs.

emlc

-o Specify Output File Name
-0 output_file_name

Generate the final output file—that is, the C MEX function, Real-Time
Workshop executable, or Real-Time Workshop library— with the

base name output_file_name. If the output file is a C MEX function,
Embedded MATLAB Coder assigns it a platform-specific extension.

You can specify output_file_name as a file name or an existing path,
with the following effects:

If you specify: emlc:

A file name Copies the MEX-file to the
current directory

An existing path Generates the MEX-file in the

directory specified by the path,
but does not copy the MEX-file to
the current directory

A path that does not exist Generates an error

Embedded MATLAB Coder generates the supporting C files with
the same base name as the corresponding M-files, replacing the .m
extension with .c.

-O Specify Compiler Optimization Option
-0 optimization_option

Specify compiler optimization_option with one of the following literals
(no quotes):

Compiler Optimization Option | Action

disable:inline Disable function inlining.

enable:inline Enable function inlining (default).

2-33

emlc

-report Generate Compilation Report

Generate a compilation report. If this option is not specified, emlc
generates a report only if there are compilation messages. See “Working
with Compilation Reports”.

-s Specify Configuration Properties
- s config_object

Generate code based on the properties of configuration object
config_object. When you specify conflicting configuration objects on the
command line, the rightmost configuration object prevails. For detailed
information about working with configuration objects, see “Configuring
Your Environment for Code Generation”.

If a configuration object is not specified, Embedded MATLAB Coder
uses default property values, as follows:

Defaults for emlcoder.MEXConfig.

Property Default

K

Name ’Automatic C MEX Generation

EnableDebugging false

GenerateReport false

LaunchReport false

CustomSourceCode v

CustomHeaderCode

CustomInitializer

CustomTerminator

CustomInclude

CustomSource

CustomLibrary

2-34

emlc

Defaults for emlcoder.RTWConfig.

Property Default

Name ’Real-Time Workshop’
RTWVerbose false
GenCodeOnly false
GenerateMakefile true
GenerateReport false
LaunchReport false
MaxIDLength 31
GenFloatMathFcnCalls ’ANSI_C’
MakeCommand ‘make_rtw
TemplateMakeFile ‘grt_default tmf’
PostCodeGenCommand Y
CustomSourceCode

CustomHeaderCode

CustomInitializer

CustomTerminator

CustomInclude

CustomSource

CustomLibrary

Defaults for emlcoder.Hardwarelmplementation.

Property

Default

Name

’Hardware Implementation’

2-35

emlc

Property Default
ProdHWDeviceType ’Generic->MATLAB Host
Computer’
ProdBitPerChar 8
ProdBitPerShort 16
ProdBitPerInt 32
ProdBitPerLong 32
ProdWordSize 32
ProdShiftRightIntArith true
ProdEndianess ‘LittleEndian’
ProdIntDivRoundTo Zero’

-T Specify Target
-T target_option

Specify a target option as follows:

Target Option Action

mex Generate a C MEX function
(default).

rtw Generate embeddable C code and

or compile it to an executable (.exe

rtw:exe file).

rtw:lib Generate embeddable C code and
compile it to a library (.11ib file).

Note The rtw:exe, rtw, and rtw:1ib options require Real-Time
Workshop.

2-36

emlc

See “Choosing Your Target”.

-v Show Compilation Steps

Enable verbose mode to show compilation steps.

-? Display Help
Display theemlc command help.

2-37

findIincludeFiles

2-38

Purpose

Syntax

Arguments

Description

Find and add include (header) files to build information object

findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

buildinfo
Build information returned by RTW.BuildInfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

® Must start with *.
¢ Can include any combination of alphanumeric and underscore
() characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp

.X

The findIncludeFiles function

e Searches for include files, based on specified file name extension
patterns, in all source and include paths recorded in a model’s build
information object

® Adds the files found, along with their full paths, to the build
information object

¢ Deletes duplicate entries

findIincludeFiles

Examples Find all include files with filename extension .h that are in build
information object myModelBuildInfo, and add the full paths for any
files found to the object.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {fullfile(pwd,...
‘mycustomheaders')}, 'myheaders');
findIncludeFiles(myModelBuildInfo);
headerfiles = getIncludeFiles(myModelBuildInfo, true, false);
headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

See Also “Programming a Post Code Generation Command”

2-39

getCompileFlags

Purpose

Syntax

Arguments

Returns

Description

Examples

2-40

Compiler options from model’s build information

options=getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

Compiler options stored in the model’s build information.

The getCompileFlags function returns compiler options stored in
the model’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude
groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get all compiler options stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...

{'Debug' 'MemOpt'});

getCompileFlags
|

compflags=getCompileFlags (myModelBuildInfo);
compflags

compflags =
'-Zi -Wall' '-03'

® Get the compiler options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, 'Debug');
compflags

compflags =
'-Zi -Wall'

® Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');
compflags

compflags =

|_03|

See Also getDefines, getLinkFlags

“Programming a Post Code Generation
Command”

2-41

getDefines

2-42

Purpose

Syntax

Arguments

Returns

Preprocessor macro definitions from model’s build information

[macrodefs, identifiers, values]=getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

Preprocessor macro definitions stored in the model’s build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodef Complete macro definitions with -D
prefix

identifiers Names of the macros

values Values assigned to the macros (anything

specified to the right of the first equals
sign) ; the default is an empty string (' ')

getDefines

Description

Examples

The getDefines function returns preprocessor macro definitions
stored in the model’s build information. When the function returns a
definition, it automatically

® Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

® Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of definitions the function
is to return.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

e Get all preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
"test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug’...
'Release'});

[defs names values]=getDefines(myModelBuildInfo);

defs

defs =

' -DPROTO=first' ' -DDEBUG" '-Dtest’ ' -DPRODUCTION'
names
names =

"PROTO'

'DEBUG'

"test’
'"PRODUCTION'

2-43

getDefines

values
values =

'first'

® Get the preprocessor macro definitions stored with the group name
Debug in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...

'Release'});
[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs
defs =
' -DPROTO=first' ' -DDEBUG' '-Dtest’

® Get all preprocessor macro definitions stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
‘test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug’...
'Release'});

[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

' -DPRODUCTION'

2-44

getDefines

See Also getCompileFlags, getLinkFlags
“Programming a Post Code Generation Command”

2-45

getincludeFiles

2-46

Purpose Include files from model’s build information

Syntax files=getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

getincludeFiles

Returns

Description

Examples

Names of include files stored in the model’s build information.

The getIncludeFiles function returns the names of include files
stored in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get all include paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles (myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/1lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, true, false);
incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

2-47

getincludeFiles

® Get the names of include files in group etc that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
‘mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, false, false,...

‘etc');
incfiles
incfiles =
‘etc.h’ ‘etc_private.h'
See Also getIncludePaths, getSourceFiles, getSourcePaths

“Programming a Post Code Generation Command”

2-48

getincludePaths

Purpose

Syntax

Arguments

Returns

Description

Include paths from model’s build information

files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $ (MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

Paths of include files stored in the model’s build information.

The getIncludePaths function returns the names of include file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

2-49

getincludePaths
|

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Examples ¢ Get all include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false);
incpaths

incpaths =
"\etc\proj\etclib' [1x22 char] ‘\common\1lib"

® Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths (myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');

incpaths

incpaths =

"\common\1lib"''

See Also getIncludeFiles, getSourceFiles, getSourcePaths
“Programming a Post Code Generation Command”

2-50

getLinkFlags
|

Purpose Link options from model’s build information
Syntax options=getLinkFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker
flags you do not want the function to return. To exclude groups
and not include specific groups, specify an empty cell array (' ')
for includeGroups.

Returns Linker options stored in the model’s build information.

Description The getLinkFlags function returns linker options stored in the model’s
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options
the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

2-51

getlLinkFlags

Examples ® Get all linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo);

linkflags

linkflags =
'-MD -Gy' LT

® Get the linker options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});
linkflags

linkflags =
'-MD -Gy'

® Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});
linkflags

linkflags =

I_TI

2-52

getLinkFlags
|

See Also getCompileFlags, getDefines
“Programming a Post Code Generation
Command”

2-53

getSourceFiles

2-54

Purpose Source files from model’s build information

Syntax srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

getSourceFiles

Returns Names of source files stored in the model’s build information.

Description The getSourceFiles function returns the names of source files stored
in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Examples ¢ Get all source paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...

{'test1.c' 'test2.c' 'driver.c'}, '',...

{'Tests' 'Tests' 'Drivers'});
srcfiles=getSourceFiles(myModelBuildInfo, false, false);
srcfiles

srcfiles =

"testl.c' 'test2.c' 'driver.c'

2-55

getSourceFiles

® Get the names of source files in group tests that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, {'testi1.c'
'driver.c'}, {'/proj/testi1' '/proj/test2'...
"/drivers/src'}, {'tests', 'tests', 'drivers'});

incfiles=getSourceFiles(myModelBuildInfo, false, false,
"tests');

incfiles

"test2.c'...

incfiles =

"testil.c' 'test2.c'

See Also getIncludeFiles, getIncludePaths, getSourcePaths

“Programming a Post Code Generation Command”

2-56

getSourcePaths

Purpose

Syntax

Arguments

Returns

Description

Source paths from model’s build information

files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

Paths of source files stored in the model’s build information.

The getSourcePaths function returns the names of source file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

2-57

getSourcePaths

Examples ® Get all source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths

srcpaths =
"\proj\test1' "\proj\test2' ‘“\drivers\src'

¢ Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/testt1'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});

srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');
srcpaths

srcpaths =
"\proj\testt' "\proj\test2’

® Get a path stored in build information myModelBuildInfo. First get
the path without replacing $ (MATLAB_ROOT) with an absolute path,
then get it with replacement. The MATLAB root directory in this
case is \\myserver\myworkspace\matlab.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...

‘'rtw', 'c', 'libsrc'));
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths{:}

2-58

getSourcePaths

ans =
$ (MATLAB_ROOT) \rtw\c\1libsrc

srcpaths=getSourcePaths(myModelBuildInfo, true);
srcpaths{:}

ans =

\\myserver\myworkspace\matlab\rtw\c\libsrc

See Also getIncludeFiles, getIncludePaths, getSourceFiles
“Programming a Post Code Generation Command”

2-59

packNGo

Purpose Package model code in zip file for relocation

Syntax packNGo (buildinfo, propVals...)

propVals is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

propVals (optional)
A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package all model code files in a zip 'packType' ‘flat' (default)

file as a single, flat directory

Package model code files hierarchically | 'packType' 'hierarchical 'Paths

in a primary zip file that contains for files in the

three secondary zip files: secondary zip files

e mlrFiles.zip — files in your are relative to the root
matlabroot directory tree directory of the primary

zip file.

® sDirFiles.zip — files in and under
your build directory

® otherFiles.zip — required files
not in the matlabroot or start
directory trees

Specify a file name for the primary zip | 'fileName' 'string'

file Default: 'model.zip'

If you omit the . zip file
extension, the function
adds it for you.

Description The packNGo function packages the following code files in a compressed
zip file so you can relocate, unpack, and rebuild them in another
development environment:

2-60

packNGo

Examples

See Also

® Source files (for example, .c and .cpp)

e Header files (for example, .h and .hpp)

o MAT-file that contains the model’s build information object (.mat)
You might use this function to relocate files so they can be recompiled for

a specific target environment or rebuilt in a development environment
in which MATLAB is not installed.

By default, the function packages the files as a flat directory structure
in a zip file named model.zip. You can tailor the output by specifying
property name and value pairs as explained above.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

¢ Package the code files for model zingbit in the file zingbit.zip as a
flat directory structure.

set_param('zingbit', 'PostCodeGenCommand', 'packNGo(buildInfo);"');

Then, rebuild the model.

® Package the code files for model zingbit in the file portzingbit.zip
and maintain the relative file hierarchy.

cd zingbat_grt_rtw;

load buildInfo.mat

packNGo (buildInfo, {'packType', 'hierarchical’,
'fileName', 'portzingbit'});

“Programming a Post Code Generation Command”
“Relocating Code to Another Development Environment”

2-61

rftwreport

2-62

Purpose

Syntax

Arguments

Description

Example

Document generated code

rtwreport(model, dir)

dir is optional.

model
The model for which generated code is to be documented.

dir (optional)
The directory that contains the generated code. Specify this
argument only if the build directory is not in the current directory
or in the directory that stores the model. The directory you specify
must be a standard build directory and its parent directory must
include the model’s project directory (slprj) .

The rtwreport function generates a report that documents the code
generated by Real-Time Workshop for a specified model. If necessary,
the function loads the model and generates code before generating the
report, which includes:

® Snapshots of block diagrams of the model and its subsystems

¢ Block execution order

¢ Summary of the generated code

e Full listings of the generated code that resides in the build directory
By default, Real-Time Workshop names the generated report
codegen.html and places the file in the current directory. If you specify
an optional directory, Real-Time Workshop places the file codegen.html
in the parent directory of the specified directory. If the specified

directory is not found, an error results and Real-Time Workshop does
not attempt to generate code for the model.

Generate a report for mymodel.

rtwreport(mymodel) ;

rtwreport
|

See Also “Documenting a Code Generation Project”

2-63

rsimgetrip

2-64

Purpose

Syntax

Arguments

Returns

Description

Model’s global parameter structure

rsimgetrtp(model, option)

option is optional.

model
The model for which you are running the rapid simulations.

option (optional)
The parameter-value pair 'AddTunableParamInfo' 'value',
where value can be 'on' or 'off'. If you set the parameter
to 'on', Real-Time Workshop extracts tunable parameter
information from the specified model and returns it to
param_struct.

A structure that contains the specified model’s parameter structure.

The rsimgetrtp function forces an update diagram action for the
specified model and returns a structure that contains the following
fields:

rsimgetrtp

Field

modelChecksum

parameters

Description

A four-element vector that encodes the
structure of the model. Real-Time Workshop
uses the checksum to check whether the
structure of the model has changed since
the RSim executable was generated. If you
delete or add a block, and then generate a
new model P vector, the new checksum no
longer matches the original checksum. The
RSim executable detects this incompatibility
in parameter vectors and exits to avoid
returning incorrect simulation results. If
the model structure changes, you must
regenerate the code for the model.

A structure that contains the model’s global
parameters.

The parameters substructure includes the following fields:

Field
dataTypeName

dataTypelID

complex
dtTransIdx

values

Description

The name of the parameter’s data type, for
example, double

An internal data type identifier that
Real-Time Workshop uses

The value 0 if real and 1 if complex
Internal use only

A vector of parameter values

2-65

rsimgetrip

If you specify 'AddTunableParamInfo', 'on', Real-Time Workshop
creates and then deletes model . rtw from your current working directory
and includes a map substructure that has the following fields:

Field Description

Identifier Parameter name

ValuelIndicies A vector of indices to the parameter values

Dimensions A vector indicating the parameter
dimensions

To use the AddTunableParamInfo option, you must enable inline
parameters.

Examples Returns the parameter structure for model rtwdemo_rsimtf to
param_struct.

rtwdemo_rsimtf
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct
modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009

2.3064e+009]
parameters: [1x1 struct]

See Also “Creating a MAT-File That Includes a Model’s Parameter Structure”

2-66

updateFilePathsAndExtensions

Purpose Update files in model’s build information with missing paths and file
extensions
Syntax updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

extensions (optional)
A cell array of character arrays that specifies the extensions
(file types) of files for which to search and include in the update
processing. By default, the function searches for files with a
.c extension. The function checks files and updates paths and
extensions based on the order in which you list the extensions in
the cell array. For example, if you specify {'.c' '.cpp'} and
a directory contains myfile.c and myfile.cpp, an instance of
myfile would be updated to myfile.c.

Description Using paths that already exist in a model’s build information, the
updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or
file extension. This function can be particularly useful for

¢ Maintaining build information for a toolchain that requires the use of
file extensions

¢ Updating multiple customized instances of build information for a
given model

2-67

updateFilePathsAndExtensions

Examples Create the directory path etcproj/etc in your working directory, add
files etc.c, test1.c, and test2.c to the directory etc. This example
assumes the working directory is w: \work\BuildInfo. From the
working directory, update build information myModelBuildInfo with
any missing paths or file extensions.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, fullfile(pwd,...
‘etcproj', '/etc'), 'test');

addSourceFiles(myModelBuildInfo, {'etc' 'testl1'...

"test2'}, '', 'test');
before=getSourceFiles(myModelBuildInfo, true, true);
before
before =

"\etc' "\test1' "\test2'

updateFilePathsAndExtensions(myModelBuildInfo);
after=getSourceFiles(myModelBuildInfo, true, true);
after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\testi.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

2-68

updateFilePathsAndExtensions

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFileSeparator
“Programming a Post Code Generation Command”

2-69

updateFileSeparator

Purpose
Syntax

Arguments

Description

Examples

See Also

2-70

Change file separator used in model’s build information
updateFileSeparator(buildinfo, separator)

buildinfo
Build information returned by RTW.BuildInfo.

separator
A character array that specifies the file separator \ (Windows) or /
(UNIX) to be applied to all file path specifications.

The updateFileSeparator function changes all instances of the current
file separator (/ or \) in a model’s build information to the specified
file separator.

The default value for the file separator matches the value returned by
the MATLAB command filesep. For makefile based builds, you can
override the default by defining a separator with the MAKEFILE_FILESEP
macro in the template makefile (see “Cross-Compiling Code Generated
on Windows”. If the GenerateMakefile parameter is set, Real-Time
Workshop overrides the default separator and updates the model’s build
information after evaluating the PostCodeGenCommand configuration
parameter.

Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator(myModelBuildInfo, '\');

addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFilePathsAndExtensions

“Programming a Post Code Generation Command”, “Cross-Compiling
Code Generated on Windows”

Simulink Block Support

The tables in this chapter summarize Real-Time Workshop and Real-Time
Workshop Embedded Coder support for Simulink blocks. A table appears
for each library. For each block, the second column indicates any support
notes (SNs), which give information you will need when using the block for
code generation.

All support notes appear at the end of this chapter in Support Notes on page
3-18. For more detail, enter the command showblockdatatypetable at the
MATLAB command prompt or consult the block reference pages.

3 Simulink Block Support

3-2

Additional Math and Discrete: Additional Discrete

Block Support Notes
Fixed-Point State-Space SN1
Transfer Fen Direct Form 11 SN1, SN2
Transfer Fen Direct Form II Time Varying SN1, SN2
Unit Delay Enabled SN1, SN2
Unit Delay Enabled External IC SN1, SN2
Unit Delay Enabled Resettable SN1, SN2
Unit Delay Enabled Resettable External IC SN1, SN2
Unit Delay External IC SN1, SN2
Unit Delay Resettable SN1, SN2
Unit Delay Resettable External IC SN1, SN2
Unit Delay With Preview Enabled SN1, SN2
Unit Delay With Preview Enabled Resettable SN1, SN2
Unit Delay With Preview Enabled Resettable SN1, SN2
External RV

Unit Delay With Preview Resettable SN1, SN2
Unit Delay With Preview Resettable External RV SN1, SN2

Additional Math and Discrete: Increment/Decrement

Block Support Notes
Decrement Real World SN1

Decrement Stored Integer SN1

Decrement Time To Zero —

Decrement To Zero SN1

Increment Real World SN1

Increment Stored Integer SN1

3-3

3 Simulink Block Support

Continuous

Block Support Notes
Derivative SN3, SN4
Integrator SN3, SN4
State-Space SN3, SN4
Transfer Fen SN3, SN4
Transport Delay SN3, SN4
Variable Time Delay SN3, SN4
Variable Transport Delay SN3, SN4
Zero-Pole SN3, SN4

3-4

Discontinuities

Block Support Notes
Backlash SN2
Coulomb and Viscous Friction SN1
Dead Zone —

Dead Zone Dynamic SN1

Hit Crossing SN4
Quantizer —

Rate Limiter SN5

Rate Limiter Dynamic SN1, SN5
Relay —
Saturation —
Saturation Dynamic SN1
Wrap To Zero SN1

3-5

3 Simulink Block Support

3-6

Discrete
Block Support Notes
Difference SN1
Discrete Derivative SN2, SN6
Discrete Filter SN2
Discrete State-Space SN2
Discrete Transfer Fen SN2
Discrete Zero-Pole SN2
Discrete-Time Integrator SN2, SN6
First-Order Hold SN4
Integer Delay SN2
Memory —
Tapped Delay SN2
Transfer Fen First Order SN1
Transfer Fen Lead or Lag SN1
Transfer Fen Real Zero SN1
Unit Delay SN2

Weighted Moving Average

Zero-Order Hold

Logic and Bit Operations

Block

Support Notes

Bit Clear

Bit Set

Bitwise Operator

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change SN2
Detect Decrease SN2
Detect Fall Negative SN2
Detect Fall Nonpositive SN2
Detect Increase SN2
Detect Rise Nonnegative SN2
Detect Rise Positive SN2

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

3-7

3 Simulink Block Support

Lookup Tables

Block Support Notes
Cosine SN1
Direct Lookup Table (n-D) SN2

Interpolation Using Prelookup —

Lookup Table —

Lookup Table (2-D) —

Lookup Table (n-D) —

Lookup Table Dynamic —

Prelookup —

Sine SN1

3-8

Math Operations

Block

Support Notes

Abs

Add

Algebraic Constraint

Not supported

Assignment

SN2

Bias

Complex to Magnitude-Angle

Complex to Real-Imag

Divide

Dot Product

Gain

Magnitude-Angle to Complex

Math Function (10”u)

Math Function (conj)

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (log10)

Math Function (magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (sqrt)

3-9

3 Simulink Block Support

Math Operations (Continued)

Block Support Notes

Math Function (transpose) =

Matrix Concatenate SN2

MinMax —

MinMax Running Resettable —

Permute Dimensions SN2

Polynomial —

Product SN2

Product of Elements SN2

Real-Imag to Complex —

Reshape —

Rounding Function —

Sign —

Sine Wave Function SN6, SN9

Slider Gain —

Squeeze SN2

Subtract —

Sum —

Sum of Elements =

Trigonometric Function SN7

Unary Minus —

Vector Concatenate SN2

Weighted Sample Time Math —

3-10

Model Verification

Block

Support Notes

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic Upper Bound

Check Input Resolution

Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

3-11

3 Simulink Block Support

3-12

Ports & Subsystems

Block

Support Notes

Atomic Subsystem

CodeReuse Subsystem

Configurable Subsystem

Enabled Subsystem

Enabled and Triggered Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Subsystem

If

If Action Subsystem

Model

Subsystem

Switch Case

Switch Case Action Subsystem

Triggered Subsystem

While Iterator Subsystem

Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion Inherited

Data Type Duplicate

Data Type Propagation

Data Type Scaling Strip

IC SN4
Probe —
Rate Transition SN2, SN5

Signal Conversion

Signal Specification

Weighted Sample Time

Width

3-13

3 Simulink Block Support

3-14

Signal Routing

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Environment Controller

From

Goto

Goto Tag Visibility

Index Vector

Manual Switch SN4
Merge SN13
Multiport Switch SN2
Mux —
Selector —
Switch SN2

Sinks

Block Support Notes
Display SN8

Floating Scope SN8

Outport (Outl) —

Scope SN8

Stop Simulation SN14
Terminator —

To File SN4

To Workspace SN8

XY Graph SN8

3-15

3 Simulink Block Support

3-16

Sources
Block Support Notes
Band-Limited White Noise SN5
Chirp Signal SN4
Clock SN4
Constant —
Counter Free-Running SN4
Counter Limited SN1, SN4
Digital Clock SN4
From File SN8
From Workspace SN8
Ground —
Inport (Inl) —
Pulse Generator SN5, SN9
Ramp SN4
Random Number —
Repeating Sequence SN10
Repeating Sequence Interpolated SN1, SN5
Repeating Sequence Stair SN1
Signal Builder SN4
Signal Generator SN4
Sine Wave SN6, SN9
Step SN4

Uniform Random Number

User-Defined

Block

Support Notes

Embedded MATLAB Function

Fen

Level-2 M-File S-Function

Not supported

MATLAB Fen

SN11

S-Function

SN12

S-Function Builder

3-17

3 Simulink Block Support

3-18

Support Notes

Symbol

Note

Real-Time Workshop supports the block and requires no special
notes.

SN1

Real-Time Workshop does not explicitly group primitive blocks
that constitute a nonatomic masked subsystem block in the
generated code. This flexibility allows for more optimal code
generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

SN2

Generated code relies on memcpy or memset (string.h) under
certain conditions.

SN3

Consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support
code generation. To start the Model Discretizer, click
Tools > Control Design.

SN4

Not recommended for production code.

SN5

Cannot use inside a triggered subsystem hierarchy.

SN6

Depends on absolute time when used inside a triggered
subsystem hierarchy.

SN7

The three functions — asinh, acosh, and atanh — are not
supported by all compilers. If you use a compiler that does not
support these functions, Real-Time Workshop issues a warning
message for the block and the generated code fails to link.

SN8

Ignored for code generation.

SN9

Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.

SN10

Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

SN11

Consider using the Embedded MATLAB block instead.

Support Notes (Continued)

Symbol

Note

SN12

S-functions that call into MATLAB are not supported for code
generation.

SN13

When more than one signal connected to a Merge block has a
non-Auto storage class, all non-Auto signals connected to that
block must be identically labeled and have the same storage
class. When Merge blocks connect directly to one another, these
rules apply to all signals connected to any of the Merge blocks
in the group.

SN14

When a model includes a Stop Simulation block, generated code
stops executing when the stop condition is true.

3-19

3 Simulink Block Support

3-20

Blocks — By Category

Custom Code (p. 4-2)

Interrupt Templates (p. 4-3)

S-Function Target (p. 4-4)
VxWorks (p. 4-5)

Insert custom code into generated
model files and subsystem functions

Create blocks that provide interrupt
support for real-time operating
system (RTOS)

Generate code for S-function

Support VxWorks applications

4 piocks — By Category

Custom Code

Model Header
Model Source

System Derivatives

System Disable
System Enable

System Initialize

System Outputs
System Start

System Terminate

System Update

Specify custom header code
Specify custom source code

Specify custom system derivative
code

Specify custom system disable code
Specify custom system enable code

Specify custom system initialization
code

Specify custom system outputs code
Specify custom system startup code

Specify custom system termination
code

Specify custom system update code

Interrupt Templates

Interrupt Templates

Async Interrupt

Task Sync

Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

4-3

4 piocks — By Category

S-Function Target

RTW S-Function Represent model or subsystem as
generated S-function code

4-4

VxWorks

VxWorks

Async Interrupt

Protected RT

Task Sync

Unprotected RT

Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Handle transfer of data between
blocks operating at different rates
and ensure data integrity

Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

Handle transfer of data between
blocks operating at different rates
and ensure determinism

4 piocks — By Category

Blocks — Alphabetical List

Async Interrupt

5-2

Purpose

Library

Description

SmIR: RGN

Parameters

Generate Versa Module Eurocard (VME) interrupt service routines
(ISRs) that are to execute downstream subsystems or Task Sync blocks

Interrupt Templates, VxWorks

For each specified VxWorks VME interrupt level, the Async Interrupt

block generates an interrupt service routine (ISR) that calls one of the
following:

e A function call subsystem
e A Task Sync block

® A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

VME interrupt number(s)

An array of VME interrupt numbers for the interrupts to be
installed. The valid range is 1..7.

The width of the Async Interrupt block output signal corresponds
to the number of VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block.
However, if you use more than one Async Interrupt block, do not
duplicate the VME interrupt numbers specified in each block.

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding
to the VME interrupt numbers entered in the VME interrupt
number(s) field. Real-Time Workshop passes the offsets to the
VxWorks call intConnect (INUM_TO IVEC(offset),...).

Async Interrupt

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output
of the Async Interrupt block drives a downstream block (for
example, a function-call subsystem). Specify an array of priorities
corresponding to the VME interrupt numbers you specify for
VME interrupt number(s).

The Simulink task priority values are required to generate
the proper rate transition code (see “Rate Transitions and
Asynchronous Blocks” in the Real-Time Workshop documentation).
Simulink task priority values are also required to ensure absolute
time integrity when the asynchronous task needs to obtain real
time from its base rate or its caller. The assigned priorities
typically are higher than the priorities assigned to periodic tasks.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the
Async Interrupt block drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts
in VxWorks. To lock out interrupts during the execution of an
ISR, set the preemption flag to 0. This causes generation of
intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases

the system’s interrupt response time for all interrupts at the
intLockLevelSet() level and below. Specify an array of flags
corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

Async Interrupt

Note The number of elements in the arrays specifying VME
interrupt vector offset(s) and Simulink task priority must
match the number of elements in the VME interrupt number(s)
array.

Manage own timer

If checked, the ISR generated by the Async Interrupt block
manages its own timer by reading absolute time from the
hardware timer. Specify the size of the hardware timer with the
Timer size option.

Timer resolution (seconds)

The resolution of the ISRs timer. ISRs generated by the Async
Interrupt block maintain their own absolute time counters. By
default, these timers obtain their values from the VxWorks
kernel by using the tickGet call. The Timer resolution

field determines the resolution of these counters. The default
resolution is 1/60 second. The tickGet resolution for your board
support package (BSP) might be different. You should determine
the tickGet resolution for your BSP and enter it in the Timer
resolution field.

If you are targeting VxWorks, you can obtain better timer
resolution by replacing the tickGet call and accessing a hardware
timer by using your BSP instead. If you are targeting an RTOS
other than VxWorks, you should replace the tickGet call with an
equivalent call to the target RTOS, or generate code to read the
appropriate timer register on the target hardware. See “Using
Timers in Asynchronous Tasks” and “Async Interrupt Block
Implementation” in the Real-Time Workshop documentation for
more information.

Timer size

The number of bits to be used to store the clock tick for a hardware
timer. The ISR generated by the Async Interrupt block uses the
timer size when you select Manage own timer. The size can

Async Interrupt

be 32bits (the default), 16bits, 8bits, or auto. If you select
auto, Real-Time Workshop determines the timer size based on the
settings of Application lifespan (days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Controlling Memory Allocation for
Time Counters”. See also “Using Timers in Asynchronous Tasks”.

Enable simulation input

If checked, Simulink adds an input port to the Async Interrupt
block. This port is for use in simulation only. Connect one or more
simulated interrupt sources to the simulation input.

Note Before generating code, consider removing blocks that drive
the simulation input to ensure that those blocks do not contribute
to the generated code. Alternatively, you can use the Environment
Controller block, as explained in “Dual-Model Approach: Code
Generation”. However, if you use the Environment Controller
block, be aware that the sample times of driving blocks contribute
to the sample times supported in the generated code.

Async Interrupt

Inputs and Input
Outputs A simulated interrupt source.
Output

Control signal for a
¢ Function-call subsystem
¢ Task Sync block

¢ Stateflow chart configured for a function call input event

Assumptions ¢ The block supports VME interrupts 1 through 7.

a_nc! . ¢ The block requires a VxWorks Board Support Package (BSP) that
Limitations supports the following VxWorks system calls:

sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Performance Execution of large subsystems at interrupt level can have a significant

Considerations impact on interrupt response time for interrupts of equal and lower
priority in the system. As a general rule, it is best to keep ISRs as short
as possible. Connect only function-call subsystems that contain a small
number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function-call subsystem to a VxWorks
task. Place the Task Sync block between the Async Interrupt block
and the function-call subsystem. The Async Interrupt block then uses
the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately
from interrupt level. VxWorks then schedules and runs the task. See
the description of the Task Sync block for more information.

Async Interrupt

See Also

Task Sync
“Asynchronous Support” in the Real-Time Workshop documentation

5-7

Model Header

Purpose Specify custom header code

Librclry Custom Code

Description The Model Header block adds user-specified custom code to the model.h
file that Real-Time Workshop generates for the model that contains
the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters Top of Model Header
Code to be added at the top of the model’s generated header file.

Bottom of Model Header
Code to be added at the top of the model’s generated header file.

Example See “Example: Using a Custom Code Block”.

See Also Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-8

Model Source

Purpose
Library

Description

Parameters

Example

See Also

Specify custom source code
Custom Code
The Model Source block adds user-specified custom code to the model.c

or model.cpp file that Real-Time Workshop generates for the model
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Top of Model Source
Code to be added at the top of the model’s generated source file.

Bottom of Model Source
Code to be added at the top of the model’s generated source file.

See “Example: Using a Custom Code Block”.

Model Header, System Derivatives, System Disable,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-9

Protected RT

Purpose Handle transfer of data between blocks operating at different rates
and ensure data integrity

Libra ry VxWorks

Description The Protected RT block is a Rate Transition block that is preconfigured

to ensure data integrity during data transfers. For more information,
see Rate Transition in the Simulink Reference.

5-10

RTW S-Function
|

Purpose Represent model or subsystem as generated S-function code
Librclry S-Function Target
Description An instance of the RTW S-Function block represents code Real-Time

Workshop generates from its S-function target for a model or subsystem.
For example, you extract a subsystem from a model and build an RTW
S-Function block from it, using the S-function target. This mechanism
can be useful for

® Converting models and subsystems to application components

® Reusing models and subsystems

® Optimizing simulation — often, an S-function simulates more
efficiently than the original model

® Protecting intellectual property — you need only provide the binary
MEX-file object to users

For details on how to create an RTW S-Function block from a subsystem,
see “Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation.

Requirements The S-Function block must perform identically to the model or

subsystem from which it was generated.

¢ Before creating the block, you must explicitly specify all Inport block
signal attributes, such as signal widths or sample times. The sole
exception to this rule concerns sample times, as described in “Sample
Time Propagation in Generated S-Functions” in the Real-Time
Workshop documentation.

® You must set the solver parameters of the RTW S-function block
to be the same as those of the original model or subsystem. This
ensures that the generated S-function code will operate identically to
the original subsystem (see Choice of Solver Type in the Real-Time
Workshop documentation for an exception to this rule).

5-11

RTW S-Function

5-12

Parameters

See Also

Generated S-function name (model_sf)
The name of the generated S-function. Real-Time Workshop
derives the name by appending _sf to the name of the model or
subsystem from which the block is generated.

Show module list
If checked, displays modules generated for the S-function.

“Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation

System Derivatives

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system derivative code
Custom Code

The System Derivatives block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDerivatives
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Derivatives Function Declaration Code
Code to be added to the declaration section of the generated
SystemDerivatives function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated
SystemDerivatives function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated
SystemDerivatives function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Disable,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-13

System Disable

Purpose
Library

Description

Parameters

Example

See Also

5-14

Specify custom system disable code
Custom Code

The System Disable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDisable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Disable Function Declaration Code
Code to be added to the declaration section of the generated
SystemDisable function.

System Disable Function Execution Code
Code to be added to the execution section of the generated
SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated
SystemDisable function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Enable

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system enable code
Custom Code

The System Enable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemEnable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Enable Function Declaration Code
Code to be added to the declaration section of the generated
SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated
SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-15

System Initialize

Purpose
Library

Description

Parameters

Example

See Also

5-16

Specify custom system initialization code
Custom Code

The System Initialize block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemInitialize
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Initialize Function Declaration Code
Code to be added to the declaration section of the generated
SystemInitialize function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated
SystemInitialize function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated
SystemInitialize function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Outputs

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system outputs code
Custom Code

The System Outputs block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemOutputs
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System OQutputs Function Declaration Code
Code to be added to the declaration section of the generated
SystemOutputs function.

System OQutputs Function Execution Code
Code to be added to the execution section of the generated
SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated
SystemOutputs function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-17

System Start

Purpose
Library

Description

Parameters

Example

See Also

5-18

Specify custom system startup code
Custom Code

The System Start block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemStart
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Start Function Declaration Code
Code to be added to the declaration section of the generated
SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated
SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Terminate

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system termination code
Custom Code

The System Terminate block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemTerminate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Terminate Function Declaration Code
Code to be added to the declaration section of the generated
SystemTerminate function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated
SystemTerminate function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated
SystemTerminate function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Start, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-19

System Update

Purpose
Library

Description

Parameters

Example

See Also

5-20

Specify custom system update code
Custom Code

The System Update block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemUpdate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Update Function Declaration Code
Code to be added to the declaration section of the generated
SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated
SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Start, System Terminate

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

Task Sync
|

Pu rpose Spawn VxWorks task to run code of downstream function-call subsystem
or Stateflow chart

Librclry Interrupt Templates, VxWorks

Description The Task Sync block spawns a VxWorks task that calls a function-call

subsystem or Stateflow chart. Typically, you place the Task Sync block
between an Async Interrupt block and a function-call subsystem block
or Stateflow chart. Alternatively, you might connect the Task Sync block
to the output port of a Stateflow diagram that has an event, Output to
Simulink, configured as a function call.

The Task Sync block performs the following functions:

® Uses the VxWorks system call taskSpawn to spawn an independent
task. When the task is activated, it calls the downstream function-call
subsystem code or Stateflow chart. The block calls taskDelete to
delete the task during model termination.

® Creates a semaphore to synchronize the connected subsystem with
execution of the block.

® Wraps the spawned task in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. The first call
to semTake specifies NO_WAIT. This allows the task to determine
whether a second semGive has occurred prior to the completion of
the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

® Generates synchronization code (for example, semGive ()). This code
allows the spawned task to run. The task in turn calls the connected
function-call subsystem code. The synchronization code can run at
interrupt level. This is accomplished through the connection between
the Async Interrupt and Task Sync blocks, which triggers execution
of the Task Sync block within an ISR.

® Supplies absolute time if blocks in the downstream algorithmic code
require it. The time is supplied either by the timer maintained by

5-21

Task Sync

Parameters

5-22

the Async Interrupt block, or by an independent timer maintained by
the task associated with the Task Sync block.

When you design your application, consider when timer and signal input
values should be taken for the downstream function-call subsystem that
is connected to the Task Sync block. By default, the time and input
data are read when VxWorks activates the task. For this case, the data
(input and time) are synchronized to the task itself. If you select the
Synchronize the data transfer of this task with the caller task
option and the Task Sync block is driven by an Async Interrupt block,
the time and input data are read when the interrupt occurs (that is,
within the ISR). For this case, data is synchronized with the caller of
the Task Sync block.

Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call.
VxWorks uses this name as the task function name. This name
also serves as a debugging aid; routines use the task name to
identify the task from which they are called.

Simulink task priority (0-255)
The VxWorks task priority to be assigned to the function-call
subsystem task when spawned. VxWorks priorities range from 0
to 255, with 0 representing the highest priority.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Stack size (bytes)
Maximum size to which the task’s stack can grow. The stack size
is allocated when VxWorks spawns the task. Choose a stack size
based on the number of local variables in the task. You should
determine the size by examining the generated code for the task
(and all functions that are called from the generated code).

Task Sync

Synchronize the data transfer of this task with the caller task
If not checked (the default),

¢ The block maintains a timer that provides absolute time values
required by the computations of downstream blocks. The timer
is independent of the timer maintained by the Async Interrupt
block that calls the Task Sync block.

¢ A Timer resolution option appears.

¢ The Timer size option specifies the word size of the time
counter.

If checked,

¢ The block does not maintain an independent timer, and does
not display the Timer resolution field.

¢ Downstream blocks that require timers use the timer

maintained by the Async Interrupt block that calls the Task
Sync block (see “Using Timers in Asynchronous Tasks” in the
Real-Time Workshop documentation). The timer value is read
at the time the asynchronous interrupt is serviced, and data
transfers to blocks called by the Task Sync block and execute
within the task associated with the Async Interrupt block.
Therefore, data transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block’s timer in seconds. This option appears
only if Synchronize the data transfer of this task with the
caller task is not checked. By default, the block gets the timer
value by calling the VxWorks tickGet function. The default
resolution is 1/60 second. The tickGet resolution for your BSP
might be different. You should determine the tickGet resolution
for your BSP and enter it in the Timer resolution field.

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The size can be 32bits (the default), 16bits, 8bits, or
auto. If you select auto, Real-Time Workshop determines the

5-23

Task Sync

5-24

Inputs and
Outputs

See Also

timer size based on the settings of Application lifespan (days)
and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Controlling Memory Allocation for
Time Counters”. See also “Using Timers in Asynchronous Tasks”.

Input
A call from an Async Interrupt block.

Output
A call to a function-call subsystem.

Async Interrupt
“Asynchronous Support” in the Real-Time Workshop documentation

Unprotected RT
|

Purpose Handle transfer of data between blocks operating at different rates
and ensure determinism

Libra ry VxWorks

Description The Unprotected RT block is a Rate Transition block that is
preconfigured to ensure deterministic data transfers. For more
information, see Rate Transition in the Simulink Reference.

5-25

Unprotected RT

5-26

Configuration Parameters

Real-Time Workshop Pane: General
(p. 6-3)

Real-Time Workshop Pane:
Comments (p. 6-34)

Real-Time Workshop Pane: Symbols
(p. 6-52)

Real-Time Workshop Pane: Custom
Code (p. 6-84)

Real-Time Workshop Pane: Debug
(p. 6-94)

Real-Time Workshop Pane: Interface
(p. 6-103)

Real-Time Workshop Pane: RSim
Target (p. 6-156)

General parameters for defining
code generation for a model’s active
configuration set, including target
selection, documentation, and build
process

Parameters for controlling the
comments that you want to
automatically generate and insert
into the generated code

Parameters for selecting
automatically generated naming
rules for identifiers in code
generation

Parameters for creating a list of
custom C code, directories, source
files, and libraries to include in
generated files

Parameters for debugging the build
process and selecting TLC process
options

Parameters for selecting the target
software environment, output
variable name modifier, and data
exchange interface

6 Contfiguration Parameters

Real-Time Workshop Pane:
Real-Time Workshop S-Function
Code Generation Options (p. 6-164)

Real-Time Workshop Pane: Tornado
Target (p. 6-169)

Parameter Reference (p. 6-197)

Parameters for controlling code
generation for Real-Time Workshop
S-functions

Parameters that control code
generation for the Tornado Target

Summary of code generation
parameters for tuning model and
target configurations

Real-Time Workshop Pane: General

Real-Time Workshop Pane: General

Real-Time Workzhop

General | Comments I Symbols I Custom Code I Diebug I Interfacel

— Target zelection

Syztem target file: Igrt. He: Browse. .. |

Language: IE ll

— Documentation and raceability

[T Generate HTML repart

[T Launch report automatically

— Build proce

Compiler optimization level: IEIptimizatiu:uns off [Fazter builds) ;I

TLC optionz; I

bl akefile configuration

¥ Generate makefile

bake command: Imake_rtw
Template makefile: Igrt_default_tmf
[T Generate code anly Build

Fewert Help Apply

In this section...

“General Tab Overview” on page 6-5

“System target file” on page 6-6

“Language” on page 6-8

6 Contfiguration Parameters

In this section...

“Generate HTML report” on page 6-9
“Launch report automatically” on page 6-11
“Code-to-block highlighting” on page 6-13
“Block-to-code highlighting” on page 6-15
“Configure” on page 6-17

“Compiler optimization level” on page 6-18
“Custom compiler optimization flags” on page 6-20
“TLC options” on page 6-21

“Generate makefile” on page 6-23

“Make command” on page 6-25

“Template makefile” on page 6-27

“Ignore custom storage classes” on page 6-29
“Generate code only” on page 6-31

“Build/Generate code” on page 6-33

Real-Time Workshop Pane: General

General Tab Overview

Set up general information about code generation for a model’s active
configuration set, including target selection, documentation, and build process
parameters.

See Also
Real-Time Workshop Pane

6 Contfiguration Parameters

System target file
Specify the system target file.

Settings
Default: grt.tlc

You can specify the system target file in these ways:

¢ Use the System Target File Browser. Click the Browse button, which lets
you select a preset target configuration consisting of a system target file,
template makefile, and make command.

® Enter the name of your system target file in this field.

Tips

® The System Target File Browser lists all system target files found on
the MATLAB path. Some system target files require additional licensed
products, such as Real-Time Workshop Embedded Coder.

® To configure your model for rapid simulation, select rsim.tlc.

® For xPC Target, select xpctarget.tlc or xpctargetert.tlc.

Command-Line Information

Parameter: SystemTargetFile
Type: string

Value: any valid system target file
Default: 'grt.tlc'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Real-Time Workshop Pane: General

Application Setting
Efficiency No impact
Safety precaution ERT based (requires Real-Time Workshop

Embedded Coder license)

See Also

Available Targets
¢ Generating Efficient Code with Optimized ERT Targets

Auto-Configuring Models for Code Generation
¢ Creating and Using Host-Based Shared Libraries

6-7

6 Contfiguration Parameters

Language
Specify C or C++ code generation.

Settings
Default: C

C

Generates .c files and places the files in your build directory.
C++

Generates .cpp files and places the files in your build directory.

Tip
You might need to configure Real-Time Workshop to use the appropriate
compiler before you build a system.

Command-Line Information

Parameter: TargetLang
Type: string

Value: 'C' | 'C++'
Default: 'C'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Choosing and Configuring a Compiler

6-8

Real-Time Workshop Pane: General

Generate HTML report

Document generated code in an HTML report.

Settings
Default: off
¥ On
Generates a summary of code generation source files in an HTML

report. Places the report files in an html directory within the build
directory. In the report,

¢ There is a summary listing version and date information, and a link
to open configuration settings used for generating the code, including
TLC options and Simulink model settings.

¢ Global variable instances are hyperlinked to their definitions.

¢ Block header comments in source files are hyperlinked back to the
model; clicking one of these causes the block that generated that
section of code to be highlighted (this feature requires Real-Time
Workshop Embedded Coder and the ERT target).

I off
Does not generate a summary of files.

Dependency

This parameter enables

¢ Launch report automatically
¢ Code-to-block highlighting
¢ Block-to-code highlighting

6-9

6 Contfiguration Parameters

Command-Line Information

Parameter: GenerateReport
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

Generate HTML Report

If you are licensed to use Real-Time Workshop Embedded Coder, see also
Generating and Using an HTML Code Generation Report.

6-10

Real-Time Workshop Pane: General

Launch report automatically
Specify whether to display HTML reports automatically.

Settings
Default: off

v On
Displays the HTML report automatically in a new browser window.
I off

Does not display the HTML report, but the report is still available in
the html directory.

Dependency
This parameter is enabled by Generate HTML report.

Command-Line Information

Parameter: LaunchReport
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact
See Also

Generate HTML Report

6-11

6 Contfiguration Parameters

If you are licensed to use Real-Time Workshop Embedded Coder, see also
Generating and Using an HTML Code Generation Report.

6-12

Real-Time Workshop Pane: General

Code-to-block highlighting
Include hyperlinks in a generated HTML report that link code to the
corresponding blocks in the model diagram.

Settings
Default: off
v On

Includes hyperlinks in the generated HTML report that link code to
corresponding blocks in the model diagram. The hyperlinks provide
traceability for validating generated code against the source model.

I off
Omits hyperlinks from the generated report.

Tip
Clear this option to speed up code generation. For large models (containing
over 1000 blocks), generation of hyperlinks can be time consuming.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter is enabled by Generate HTML report.

Command-Line Information

Parameter: IncludeHyperlinkInReport
Type: string

Value: 'on' | 'off

Default: 'off'

6-13

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

Generating and Using an HTML Code Generation Report.

6-14

Real-Time Workshop Pane: General

Block-to-code highlighting
Links blocks in a model diagram to corresponding code segments in a

generated HTML report so that the generated code for a block can be
highlighted on request.

Settings
Default: off

I7On

Includes block-to-code highlighting support in the generated HTML
report. To highlight the generated code for a block in the HTML report,
right-click the block and select Real-Time Workshop > Highlight
Code.

I off
Omits block-to-code highlighting support from the generated report.

Tip

Clear this option to speed up code generation. For large models (containing
over 1000 blocks), generation of block-to-code highlighting support can be
time consuming.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter is enabled by Generate HTML report.

Command-Line Information

Parameter: GenerateTraceInfo
Type: Boolean

Value: on | off

Default: off

6-15

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

Generating and Using an HTML Code Generation Report.

6-16

Real-Time Workshop Pane: General

Configure

Use the Configure button to open the Block-to-code highlighting dialog box.
This dialog box provides a way for you to specify a build directory containing
previously-generated model code to highlight. Applying your build directory
selection will attempt to load traceability information from the earlier build,
for which Block-to-code highlighting must have been selected.

Dependency
This parameter only appears for ERT-based targets.

See Also
Generating and Using an HTML Code Generation Report.

6-17

6 Contfiguration Parameters

6-18

Compiler optimization level

Provides flexible and generalized control over compiler optimizations for
building generated code.

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Customizes compilation during the Real-Time Workshop makefile build
process to minimize compilation time.

Optimizations on (faster runs)
Customizes compilation during the Real-Time Workshop makefile build
process to minimize run time.

Custom
Allows you to specify custom compiler optimization flags to be applied
during the Real-Time Workshop makefile build process.

Tips

¢ Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds) allow you to easily toggle compiler
optimizations on and off during code development.

® Custom allows you to enter custom compiler optimization flags at Simulink
GUI level, rather than editing compiler flags into template makefiles
(TMF's) or supplying compiler flags to Real-Time Workshop make
commands.

¢ If you specify compiler options for your Real-Time Workshop makefile build
using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the
value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

Real-Time Workshop Pane: General

Dependencies
This parameter enables Custom compiler optimization flags.

Command-Line Information

Parameter: RTWCompilerOptimization
Type: string

Value:"0ff" | "On" | Custom

Default: "0Off"

Recommended Settings

Application Setting

Debugging Optimizations off (faster builds)
Traceability Optimizations off (faster builds)
Efficiency Optimizations on (faster runs)
Safety precaution No impact

See Also

® Custom compiler optimization flags

® Controlling Compiler Optimization Level and Specifying Custom
Optimization Settings

6-19

6 Contfiguration Parameters

6-20

Custom compiler optimization flags

Specify compiler optimization flags to be applied to building the generated
code for your model.

Settings
Default: '

Specify compiler optimization flags without quotes, for example, -02.

Dependency

This parameter is enabled by selecting the value Custom for the parameter
Compiler optimization level.

Command-Line Information

Parameter: RTWCustomCompilerOptimizations
Type: string

Value:"" | user-specified flags

Default: ""

Recommended Settings
See Compiler optimization level.

See Also

® Compiler optimization level

® Controlling Compiler Optimization Level and Specifying Custom
Optimization Settings

Real-Time Workshop Pane: General

TLC options
Specify Target Language Compiler (TLC) options for code generation.

Settings
Default: '’

You can enter TLC command-line options and arguments.

Tips

¢ Specifying TLC options does not add flags to the Make command field.

¢ The summary section of the generated HTML report lists the TLC options
that you specify for the build in which you generate the report.

Command-Line Information

Parameter: TLCOptions

Type: string

Value: any valid TLC argument
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ TLC Options

¢ Command-Line Arguments

6-21

6 Contfiguration Parameters

¢ Customizing the Target Build Process with the STF_make_rtw Hook File
¢ Understanding and Using the Build Process

6-22

Real-Time Workshop Pane: General

Generate makefile

Specify generation of a makefile.

Settings
Default: on

IFOn

Generates a makefile for a model during the build process.

I ofr

Suppresses the generation of a makefile. When you clear this parameter,
you must set up any post code generation build processing, including
compilation and linking, as a user-defined command.

Dependencies
This parameter enables:

¢ Make command

* Template makefile

Command-Line Information

Parameter: GenerateMakefile

Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

6-23

6 Contfiguration Parameters

See Also

¢ Customizing Post Code Generation Build Processing

¢ Customizing the Target Build Process with the STF_make_rtw Hook File
® Understanding and Using the Build Process

6-24

Real-Time Workshop Pane: General

Make command
Specify a make command.

Settings
Default: make_rtw

The make command, a high-level M-file command, invoked when you start a
build, controls the Real-Time Workshop build process.

e Each target has an associated make command, automatically supplied
when you select a target file using the System Target File Browser.

® Some third-party targets supply a make command. See the vendor’s
documentation.

® You can specify arguments in the Make command field which pass into
the makefile-based build process.

Tip

Most targets use the default command.

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: MakeCommand

Type: string

Value: any valid make command M-file
Default: 'make_rtw'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

6-25

6 Contfiguration Parameters

Application Setting

Efficiency No impact

Safety precaution make_rtw
See Also

® Template Makefiles and Make Options

® Customizing the Target Build Process with the STF_make_rtw Hook File
® Understanding and Using the Build Process

6-26

Real-Time Workshop Pane: General

Template makefile
Specify a template makefile.

Settings
Default: grt_default tmf

The template makefile determines which compiler runs, during the make
phase of the build, to compile the generated code. You can specify template
makefiles in the following ways:

* Generate a value by selecting a target configuration using the System
Target File Browser.

o Explicitly enter a custom template makefile filename (including the
extension). The file must be on the MATLAB path.

Tips

¢ Ifyou do not include a filename extension for a custom template makefile,
Real-Time Workshop attempts to find and execute an M-file.

® You can customize your build process by modifying an existing template
makefile or by providing your own template makefile.

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: TemplateMakefile

Type: string

Value: any valid template makefile filename
Default: 'grt_default_tmf'

6-27

6 Contfiguration Parameters

6-28

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

¢ Template Makefiles and Make Options

e Available Targets

Real-Time Workshop Pane: General

Ignore custom storage classes
Specify whether to apply or ignore custom storage classes.

Settings
Default: off

I7On

Ignores custom storage classes by treating data objects that have them
as if their storage class attribute is set to Auto. Data objects with an
Auto storage class do not interface with external code and are stored as
local or shared variables or in a global data structure.

I off
Applies custom storage classes as specified. You must clear this option if
the model defines data objects with custom storage classes.

Tips

® (lear this parameter before configuring data objects with custom storage
classes.

® Setting for top-level and referenced models must match.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ (lear this parameter to enable module packaging features.

Command-Line Information

Parameter: IgnoreCustomStorageClasses
Type: string

Value: 'on' | 'off

Default: 'off'

6-29

6 Contfiguration Parameters

6-30

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also
Custom Storage Classes

Real-Time Workshop Pane: General

Generate code only
Specify code generation versus an executable build.

Settings
Default: off

v On
The caption of the Build/Generate code button becomes Generate
code. The build process generates code and a makefile, but it does not
invoke the make command.

I off
The caption of the Build/Generate code button becomes Build. The
build process generates and compiles code, and creates an executable
file.

Tip
Generate code only generates a makefile only if you select Generate
makefile.

Dependency

This parameter changes the function of the Build/Generate code button.

Command-Line Information

Parameter: GenCodeOnly
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability No impact

6-31

6 Contfiguration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

Customizing Post Code Generation Build Processing

6-32

Real-Time Workshop Pane: General

Build/Generate code
Start the build or code generation process.

Tip
You can also start the build process by pressing Ctrl+B.

Dependency
When you select Generate code only, the caption of the Build button
changes to Generate code.

Command-Line Information

Command: rtwbuild
Type: string
Value: 'modelname'

Recommended Settings

Application Setting

Debugging Build

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Initiating the Build Process

6-33

6 Contfiguration Parameters

Real-Time Workshop Pane: Comments

Real-Time Workshop

General Comrments | Symbolz I Custom Code I Debug I Interfacel

— Overall contraol

¥ Include comments

— Auto generated commenk

v Simulink block, comments
[™ Show eliminated blocks

[Werbose comments for SimulinkGlobal storage class

[T Generate code only

6-34

Fewert

Help

Build

Apply

In this section...

“Comments Tab Overview” on page 6-36
“Include comments” on page 6-37
“Simulink block comments” on page 6-38

“Show eliminated blocks” on page 6-39

Real-Time Workshop Pane: Comments

In this section...

“Verbose comments for SimulinkGlobal storage class” on page 6-40
“Simulink block descriptions” on page 6-41

“Simulink data object descriptions” on page 6-43

“Custom comments (MPT objects only)” on page 6-44

“Custom comments function” on page 6-46

“Stateflow object descriptions” on page 6-48

“Requirements in block comments” on page 6-50

6-35

6 Contfiguration Parameters

Comments Tab Overview

Control the comments that Real-Time Workshop automatically generates
and inserts into the generated code.

6-36

Real-Time Workshop Pane: Comments

Include comments
Specify which comments are in generated files.

Settings
Default: on

I7On

Places comments in the generated files based on the selections in the
Auto generated comments pane.

I off
Omits comments from the generated files.

Dependencies

This parameter enables:

¢ Simulink block comments
¢ Show eliminated blocks

¢ Verbose comments for SimulinkGlobal storage class

Command-Line Information

Parameter: GenerateComments
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

6-37

6 Contfiguration Parameters

6-38

Simulink block comments
Specify whether to insert Simulink block comments.

Settings
Default: on
v On
Inserts automatically generated comments that describe a block’s code.

The comments precede that code in the generated file.

I ofr

Suppresses comments.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: SimulinkBlockComments
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

Real-Time Workshop Pane: Comments

Show eliminated blocks
Specify whether to insert eliminated block’s comments.

Settings
Default: off
v On
Inserts statements in the generated code from blocks eliminated as the

result of optimizations (such as parameter inlining).

I off
Suppresses statements.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: ShowEliminatedStatements
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

6-39

6 Contfiguration Parameters

6-40

Verbose comments for SimulinkGlobal storage class

You can control the generation of comments in the model parameter structure
declaration in model prm.h. Parameter comments indicate parameter
variable names and the names of source blocks.

Settings
Default: off

IFOn

Generates parameter comments regardless of the number of parameters.

I off
Generates parameter comments if less than 1000 parameters are
declared. This reduces the size of the generated file for models with a
large number of parameters.

Dependency

This parameter is enabled by Include comments.

Command-Line Information

Parameter: ForceParamTrailComments
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

Real-Time Workshop Pane: Comments

Simulink block descriptions

Specify whether to insert descriptions of blocks into generated code as
comments.

Settings
Default: off

v On
Includes the following comments in the generated code for each block in
the model, with the exception of virtual blocks and blocks removed due
to block reduction:

¢ The block name at the start of the code, regardless of whether you
select Simulink block comments

¢ Text specified in the Description field of each Block Parameter
dialog box

The block names and descriptions can include international
(non-US-ASCII) characters.

I ofr
Suppresses the generation of block name and description comments in
the generated code.

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: InsertBlockDesc
Type: string

Value: 'on' | 'off'
Default: 'off'

6-41

6 Contfiguration Parameters

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact
See Also

Support for International (Non-US-ASCII) Characters

6-42

Real-Time Workshop Pane: Comments

Simulink data object descriptions

Specify whether to insert descriptions of Simulink data objects into generated
code as comments.

Settings
Default: off

v On
Inserts contents of the Description field in the Model Explorer Object
Properties pane for each Simulink data object (signal, parameter, and
bus objects) in the generated code as comments.

The descriptions can include international (non-US-ASCII) characters.

I off
Suppresses the generation of data object property descriptions as
comments in the generated code.

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: SimulinkDataObjDesc
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

6-43

6 Contfiguration Parameters

6-44

Custom comments (MPT objects only)

Specify whether to include custom comments for module packaging tool (MPT)
signal and parameter data objects in generated code.

Settings
Default: off
v On
Inserts comments just above the identifiers for signal and parameter

MPT objects in generated code.

I off
Suppresses the generation of custom comments for signal and parameter
identifiers.

Dependency

¢ This parameter only appears for ERT-based targets.

® This parameter requires that you include the comments in a function
defined in an M-file or TLC file that you specify with Custom comments
function.

Command-Line Information

Parameter: EnableCustomComments
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On

Real-Time Workshop Pane: Comments

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

Adding Custom Comments

6-45

6 Contfiguration Parameters

6-46

Custom comments function

Specify a file that contains comments to be included in generated code for
module packing tool (MPT) signal and parameter data objects

Settings
Default: '

Enter the name of the M-file or TLC file for the function that includes the
comments to be inserted of your MPT signal and parameter objects. You can
specify the file name directly or click Browse and search for a file.

Tip
You might use this option to insert comments that document some or all of

an object’s property values.

Dependency

¢ This parameter only appears for ERT-based targets.

¢ This parameter is enabled by Custom comments (MPT objects only).

Command-Line Information

Parameter: CustomCommentsFcn
Type: string

Value: any valid file name
Default: '’

Recommended Settings

Application Setting

Debugging Any valid file name
Traceability Any valid file name
Efficiency No impact

Safety precaution No impact

Real-Time Workshop Pane: Comments

See Also
Adding Custom Comments

6-47

6 Contfiguration Parameters

6-48

Stateflow object descriptions

Specify whether to insert descriptions of Stateflow objects into generated
code as comments.

Settings
Default: off

¥ On
Inserts descriptions of Stateflow states, charts, transitions, and
graphical functions into generated code as comments. The descriptions
come from the Description field in Object Properties pane in the Model
Explorer for these Stateflow objects. The comments appear just above
the code generated for each object.

The descriptions can include international (non-US-ASCII) characters.

™ ofr

Suppresses the generation of comments for Stateflow objects.

Command-Line Information

Parameter: SFDataObjDesc
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

Real-Time Workshop Pane: Comments

See Also
Support for International (Non-US-ASCII) Characters

6-49

6 Contfiguration Parameters

Requirements in block comments

Specify whether to include requirement descriptions assigned to Simulink
blocks in generated code as comments.

Settings
Default: off

v On
Inserts the requirement descriptions that you assign to Simulink blocks
into the generated code as comments. Real-Time Workshop includes
the requirement descriptions in the generated code in the following

locations.
Model Element Requirement Description Location
Model In the main header file model.h
Nonvirtual At the call site for the subsystem
subsystems
Virtual subsystems At the call site of the closest nonvirtual

parent subsystem. If a virtual subsystem
has no nonvirtual parent, requirement
descriptions are located in the main header
file for the model, model .h.

Nonsubsystem blocks | In the generated code for the block

The requirement text can include international (non-US-ASCII)
characters.

I of
Suppresses the generation of comments for block requirement
descriptions.

Dependency
This parameter only appears for ERT-based targets.

6-50

Real-Time Workshop Pane: Comments

Command-Line Information

Parameter: ReqsInCode
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

Including Requirements with Generated Code in the Simulink Verification
and Validation documentation

6-51

6 Contfiguration Parameters

Real-Time Workshop Pane: Symbols

Real-Time Workshop

General I Comments Symbols | Custom Code I Debug I Interfacel

Auto-generated identifier naming rule
|7 b airnurm identifier length: |31

[T Generate code only Build

Fewert Help Apply

In this section...

“Symbols Tab Overview” on page 6-54
“Global variables” on page 6-55
“Global types” on page 6-57

“Field name of global types” on page 6-60

6-52

Real-Time Workshop Pane: Symbols

In this section...

“Subsystem methods” on page 6-62

“Local temporary variables” on page 6-65

“Local block output variables” on page 6-67
“Constant macros” on page 6-69

“Minimum mangle length” on page 6-71

“Maximum identifier length” on page 6-73
“Generate scalar inlined parameter as” on page 6-75
“Signal naming” on page 6-76

“M-function” on page 6-78

“Parameter naming” on page 6-80

“#define naming” on page 6-82

6-53

6 Contfiguration Parameters

Symbols Tab Overview
Select the automatically generated identifier naming rules.

See Also
Symbols Options

6-54

Real-Time Workshop Pane: Symbols

Global variables
Customize generated global variable identifiers.

Settings
Default: $SRENSM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.
Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any

unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-55

6 Contfiguration Parameters

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrGlobalVar
Type: string

Value: any valid combination of tokens
Default: ' SRENSM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution SRENSM
See Also

Specifying Identifier Formats
¢ Name Mangling

Model Referencing Considerations

Identifier Format Control Parameters Limitations

6-56

Real-Time Workshop Pane: Symbols

Global types

Customize generated global type identifiers.

Settings
Default: $NSRSM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.
Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any

unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-57

6 Contfiguration Parameters

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

® Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier
length setting does not apply to type definitions. If you specify $R, the code
generator includes the model name in the typedef.

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrType
Type: string

Value: any valid combination of tokens
Default: ' SN$RSM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution SNSR$M
See Also

¢ Specifying Identifier Formats
¢ Name Mangling

® Model Referencing Considerations

6-58

Real-Time Workshop Pane: Symbols

e Jdentifier Format Control Parameters Limitations

6-59

6 Contfiguration Parameters

6-60

Field name of global types

Customize generated field names of global types.

Settings
Default: NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$A Insert data type acronym (for example, 132 for long integers)
into signal and work vector identifiers.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root . For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by Simulink.

$M Insert name mangling string if required to avoid naming
collisions.
Required.
$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.
Tips

¢ Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

® Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

¢ The Maximum identifier length setting does not apply to type
definitions.

Real-Time Workshop Pane: Symbols

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrField
Type: string

Value: any valid combination of tokens
Default: 'NM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution SN$M
See Also

¢ Specifying Identifier Formats
¢ Name Mangling

e Jdentifier Format Control Parameters Limitations

6-61

6 Contfiguration Parameters

Subsystem methods
Customize generated global type identifiers.

Settings
Default: $RENSMSF

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description
$F Insert method name (for example, Update for update
method).

Empty for Stateflow functions.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by Simulink.

Empty for Stateflow functions.

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

6-62

Real-Time Workshop Pane: Symbols

Tips

Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier
length setting does not apply to type definitions. If you specify $R, the code
generator includes the model name in the typedef.

This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrFcn
Type: string

Value: any valid combination of tokens
Default: ' SRENSMSF '

6-63

6 Contfiguration Parameters

6-64

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

Any valid combination of tokens
No impact

SRENSMSF

See Also

¢ Specifying Identifier Formats

e Name Mangling

Model Referencing Considerations

Identifier Format Control Parameters Limitations

Real-Time Workshop Pane: Symbols

Local temporary variables
Customize generated local temporary variable identifiers.

Settings
Default: NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.
Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any

unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-65

6 Contfiguration Parameters

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrTmpVar
Type: string

Value: any valid combination of tokens
Default: 'NM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution SN$M
See Also

Specifying Identifier Formats
¢ Name Mangling

Model Referencing Considerations

Identifier Format Control Parameters Limitations

6-66

Real-Time Workshop Pane: Symbols

Local block output variables
Customize generated local block output variable identifiers.

Settings

Default: rtb_NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$A Insert data type acronym (for example, 132 for long integers)
into signal and work vector identifiers.

$M Insert name mangling string if required to avoid naming
collisions.
Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

Tips

¢ Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

® Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

6-67

6 Contfiguration Parameters

Command-Line Information

Parameter: CustomSymbolStrB1lkIO
Type: string

Value: any valid combination of tokens
Default: 'rtb_ NM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution rtb_NM
See Also

¢ Specifying Identifier Formats
e Name Mangling

¢ Identifier Format Control Parameters Limitations

6-68

Real-Time Workshop Pane: Symbols

Constant macros
Customize generated constant macro identifiers.

Settings
Default: SRENSM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string can
include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.
Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any

unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

Avoid name collisions in general. One way is to avoid using default block
names (for example, Gainl, Gain2...) when your model has many blocks
of the same type.

Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-69

6 Contfiguration Parameters

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

¢ This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: CustomSymbolStrMacro
Type: string

Value: any valid combination of tokens
Default: ' SRENSM'

Recommended Settings

Application Setting
Debugging No impact
Traceability Any valid combination of tokens
Efficiency No impact
Safety precaution SRENSM
See Also

Specifying Identifier Formats
¢ Name Mangling

Model Referencing Considerations

Identifier Format Control Parameters Limitations

6-70

Real-Time Workshop Pane: Symbols

Minimum mangle length

Increase the minimum number of characters used for generating name
mangling strings that help avoid name collisions.

Settings
Default: 1

Specify an integer value that indicates the minimum number of characters
the code generator is to use when generating a name mangling string. As
necessary, the minimum value automatically increases during code generation
as a function of the number of collisions. A larger value reduces the chance of
identifier disturbance when you modify the model.

Tips

¢ Minimize disturbance to the generated code during development, by
specifying a value of 4. This value is conservative and safe; it allows for
over 1.5 million collisions for a particular identifier before the mangle
length increases.

¢ Set the value to reserve at least three characters for the name mangling
string. The length of the name mangling string increases as the number of
name collisions increases.

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: ManglelLength
Type: integer

Value: any valid value
Default: 1

6-71

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability 1
Efficiency No impact
Safety precaution 4

See Also

e Name Mangling
¢ Traceability

¢ Minimizing Name Mangling

6-72

Real-Time Workshop Pane: Symbols

Maximum identifier length

Specify maximum number of characters in generated function, type definition,
variable names.

Settings

Default: 31
Minimum: 31
Maximum: 256

You can use this parameter to limit the number of characters in function,
type definition, and variable names.

Tips

® Consider increasing identifier length for models having a deep hierarchical
structure.

® When generating code from a model that uses model referencing, the
Maximum identifier length must be large enough to accommodate the
root model name and the name mangling string (if any). A code generation
error occurs if Maximum identifier length is too small.

¢ This parameter must be the same for both top-level and referenced models.

® When a name conflict occurs between a symbol within the scope of a higher
level model and a symbol within the scope of a referenced model, the symbol
from the referenced model is preserved. Name mangling is performed on
the symbol from the higher level model.

Command-Line Information

Parameter: MaxIdLength
Type: integer

Value: any valid value
Default: 31

6-73

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging Any valid value
Traceability >30
Efficiency No impact
Safety precaution >30

See Also

Generating Code for Model Referencing

6-74

Real-Time Workshop Pane: Symbols

Generate scalar inlined parameter as
Control expression of scalar inlined parameter values in the generated code.

Settings
Default: Literals
Literals
Generates scalar inlined parameters as numeric constants. This setting

can help with debugging TLC code, as it makes it easy to search for
parameter values in the generated code.

Macros
Generates scalar inlined parameters as variables with #define macros.
This setting makes generated code more readable.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter is enabled by Inline parameters .

Command-Line Information

Parameter: InlinedPrmAccess
Type: string

Value: 'Literals' | 'Macros'’
Default: 'Literals’

Recommended Settings

Application Setting
Debugging No impact
Traceability Macros
Efficiency Literals
Safety precaution No impact

6-75

6 Contfiguration Parameters

6-76

Signal naming
Specify rules for naming signals in generated code.

Settings
Default: None

None
Makes no change to signal names when creating corresponding
identifiers in generated code. Signal identifiers in the generated code
match the signal names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for signal
names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for signal names
in the generated code.

Custom M-function
Uses the M-file function specified with the M-function parameter to
create identifiers for signal names in the generated code.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ Setting this parameter to Custom M-function enables M-function.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SignalNamingRule

Type: string

Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom’
Default: 'None'

Real-Time Workshop Pane: Symbols

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

Force upper case
No impact

No impact

See Also

¢ Applying Naming Rules to Identifiers Globally

¢ M-File Programming

6-77

6 Contfiguration Parameters

M-function

Specify rule for naming identifiers in generated code.

Settings
Default: '

Enter the name of an M-file that contains the naming rule to be applied

to signal, parameter, or #define parameter identifiers in generated code.
Examples of rules you might program in such an M-file function include:

®* Remove underscore characters from signal names.

¢ Add an underscore before uppercase characters in parameter names.

®* Make all identifiers uppercase in generated code.

Tip
M-file must be in the MATLAB path.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter is enabled by Signal naming.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: DefineNamingFcn
Type: string

Value: any M-file

Default: '

6-78

Real-Time Workshop Pane: Symbols

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

¢ Applying Naming Rules to Identifiers Globally

¢ M-File Programming

6-79

6 Contfiguration Parameters

6-80

Parameter naming
Specify rule for naming parameters in generated code.

Settings
Default: None

None
Makes no change to parameter names when creating corresponding
identifiers in generated code. Parameter identifiers in the generated
code match the parameter names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for parameter
names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for parameter
names in the generated code.

Custom M-function
Uses the M-file function specified with the M-function parameter to
create identifiers for parameter names in the generated code.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ Setting this parameter to Custom M-function enables M-function.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: ParamNamingRule

Type: string

Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom’
Default: 'None'

Real-Time Workshop Pane: Symbols

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

Force upper case
No impact

No impact

See Also

¢ Applying Naming Rules to Identifiers Globally

¢ M-File Programming

6-81

6 Contfiguration Parameters

#define naming

Specify rule for naming #define parameters (defined with storage class
Define (Custom)) in generated code.

Settings
Default: None

None
Makes no change to #define parameter names when creating
corresponding identifiers in generated code. Parameter identifiers in the
generated code match the parameter names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for #define
parameter names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for #define
parameter names in the generated code.

Custom M-function
Uses the M-file function specified with the M-function parameter to
create identifiers for #define parameter names in the generated code.

Dependencies

¢ This parameter only appears for ERT-based targets.
® Setting this parameter to Custom M-function enables M-function.

® This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: DefineNamingRule

Type: string

Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom’
Default: 'None'

6-82

Real-Time Workshop Pane: Symbols

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

Force upper case
No impact

No impact

See Also

¢ Applying Naming Rules to Identifiers Globally

¢ M-File Programming

6-83

6 Contfiguration Parameters

Real-Time Workshop Pane: Custom Code

Real-Time Workshop

General I Comments I Swmbols Custom Code | Debug I Interfacel

— Include custom c-code in generated:

Source file Source file;
Header file
Imitialize function
Terminate function

Inzlude list of additional;

Inciude directonies |nclude directories:
Source files
Libraries

[T Generate code only Build

Fewert Help Apply

In this section...

“Custom Code Tab Overview” on page 6-86
“Source file” on page 6-87
“Header file” on page 6-88

“Initialize function” on page 6-89

6-84

Real-Time Workshop Pane: Custom Code

In this section...

“Terminate function” on page 6-90
“Include directories” on page 6-91
“Source files” on page 6-92
“Libraries” on page 6-93

6-85

6 Contfiguration Parameters

Custom Code Tab Overview
Create a list of custom C code, directories, source files, and libraries to include
in generated files.

Configuration

1 Select the type of information to include from the list on the left side of
the pane.

2 Enter a string to identify the specific code, directory, source file, or library.

3 Click Apply.

See Also
Configuring Custom Code

6-86

Real-Time Workshop Pane: Custom Code

Source file

Specify a source file of code to appear at the top of generated files.

Settings
Default: "'

Real-Time Workshop places code near the top of the generated model.c or
model.cpp file, outside of any function.

Command-Line Information

Parameter: CustomSource
Type: string

Value: any source file name
Default: '’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

6-87

6 Contfiguration Parameters

Header file
Specify a header file to include near top of generated file.

Settings
Default: "'

Real-Time Workshop places header file code near the top of the generated
model.h header file.

Command-Line Information

Parameter: CustomHeaderCode
Type: string

Value: any header file name
Default: '’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-88

Real-Time Workshop Pane: Custom Code

Initialize function

Specify code appearing in an initialize function.

Settings
Default: '

Real-Time Workshop places code inside the model’s initialize function in the

model.c or model.cpp file.

Command-Line Information

Parameter: CustomInitializer

Type: string
Value: any code
Default: ''

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

6-89

6 Contfiguration Parameters

6-90

Terminate function

Specify code appearing in a terminate function.

Settings
Default: '

Specify code to appear in the model’s generated terminate function in the
model.c or model.cpp file.

Dependency

A terminate function is generated only if you select the Terminate function
required check box on the Real-Time Workshop pane, Interface tab.

Command-Line Information

Parameter: CustomTerminator
Type: string

Value: any code

Default: '’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Real-Time Workshop Pane: Custom Code

Include directories
Specify a list of include directories to add to the include path.

Settings

Default:' '

Enter a space-separated list of include directories to add to the include path
when compiling the generated code.

¢ Specify absolute or relative paths to the directories.

¢ Relative paths must be relative to the directory containing your model files,
not relative to the build directory.

¢ The order in which you specify the directories is the order in which they are
searched for source and include files.

Command-Line Information

Parameter: CustomInclude
Type: string

Value: any directory file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-91

6 Contfiguration Parameters

6-92

Source files
Specify the list of source files to compile and link with the generated code.

Settings
Default: '

Enter a space-separated list of source files to compile and link with the
generated code.

Tip
The file name is sufficient if the file is in the current MATLAB directory
or in one of the include directories.

Command-Line Information

Parameter: CustomSourceCode
Type: string

Value: any source file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Real-Time Workshop Pane: Custom Code

Libraries
Specify a list of additional libraries to link with the generated code.

Settings
Default: '

Enter a space-separated list of additional libraries to link with the generated
code. Specify the libraries with a full path or just a file name when located in
the current MATLAB directory or is listed as one of the include directories.

Command-Line Information

Parameter: CustomLibrary
Type: string

Value: any library file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-93

6 Contfiguration Parameters

Real-Time Workshop Pane: Debug

Real-Time Workshop

General I Comments I Symbolz I Custom Code Cebug I Interfacel

— Build proce

v “erbose buid
[Betain . file

— TLC proce

[Profile TLC
[~ Start TLC debugger when generating code
[Start TLC coverage when generating code

[~ Enable TLC assertion

[T Generate code only Build

Fewert Help Apply

In this section...

“Debug Tab Overview” on page 6-96
“Verbose build” on page 6-97
“Retain .rtw file” on page 6-98
“Profile TLC” on page 6-99

6-94

Real-Time Workshop Pane: Debug

In this section...

“Start TLC debugger when generating code” on page 6-100
“Start TLC coverage when generating code” on page 6-101
“Enable TLC assertion” on page 6-102

6-95

6 Contfiguration Parameters

Debug Tab Overview
Select build process and Target Language Compiler (TLC) process options.

See Also
“Troubleshooting the Build Process”

6-96

Real-Time Workshop Pane: Debug

Verbose build

Display code generation progress.

Settings
Default: on

I7On

The MATLAB Command Window displays progress information
indicating code generation stages and compiler output during code
generation.

I off
Does not display progress information.

Command-Line Information

Parameter: RTWVerbose
Type: string

Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

6-97

6 Contfiguration Parameters

Retain .rtw file

Specify model.rtw file retention.

Settings
Default: off

¥ On
Retains the model.rtw file in the current build directory. This

parameter is useful if you are modifying the target files and need to
look at the file.

I ofr
Deletes the model. rtw from the build directory at the end of the build
process.

Command-Line Information

Parameter: RetainRTWFile
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-98

Real-Time Workshop Pane: Debug

Profile TLC
Profile the execution time of TLC files.

Settings
Default: off

¥ On
The TLC profiler analyzes the performance of TLC code executed during
code generation, and generates an HTML report.

™ ofr

Does not profile the performance.

Command-Line Information

Parameter: ProfileTLC
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-99

6 Contfiguration Parameters

6-100

Start TLC debugger when generating code
Specify use of the TLC debugger

Settings
Default: off

¥ On
The TLC debugger starts during code generation.

I off
Does not start the TLC debugger.

Tips
® You can also start the TLC debugger by entering the -dc argument into the
System target file field.

¢ To invoke the debugger and run a debugger script, enter the -df filename
argument into the System target file field.

Command-Line Information

Parameter: TLCDebug
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

Real-Time Workshop Pane: Debug

Start TLC coverage when generating code
Generate the TLC execution report.

Settings
Default: off

v On
Generates . log files containing the number of times each line of TLC
code is executed during code generation.

I off
Does not generate a report.

Tip
You can also generate the TLC execution report by entering the -dg argument
into the System target file field.

Command-Line Information

Parameter: TLCCoverage
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-101

6 Contfiguration Parameters

Enable TLC assertion
Produce the TLC stack trace

Settings
Default: off

I7On

Real-Time Workshop halts building if any user-supplied TLC file
contains an %assert directive that evaluates to FALSE.

I ofr

Real-Time Workshop ignores TLC assertion code.

Command-Line Information

Parameter: TLCAssert
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

6-102

Real-Time Workshop Pane: Interface

Real-Time Workshop Pane: Interface

Real-Time Workzhop

General I Comments I Swmbolz I Custom Code I Debug Interface |
— Saftware environment
Target function library: [CAIACI0 (ANS]) |
Itiliby Function generation; I.-'i‘-.uh:u LI
— Yerfication
b AT -file wariable name modifier: Irt_ ;I
— Data exchange
Interface: |MNone ;I
[T Generate code only Build
Frewert Help Apply

In this section...

“Interface Tab Overview” on page 6-105

“Target function library” on page 6-106

“Utility function generation” on page 6-108
“Support: floating-point numbers” on page 6-109

6-103

6 Contfiguration Parameters

In this section...

“Support: absolute time” on page 6-111
“Support: non-finite numbers” on page 6-113
“Support: continuous time” on page 6-115
“Support: complex numbers” on page 6-117
“Support: non-inlined S-functions” on page 6-118
“GRT compatible call interface” on page 6-120
“Single output/update function” on page 6-122
“Terminate function required” on page 6-124
“Generate reusable code” on page 6-126
“Reusable code error diagnostic” on page 6-129
“Pass root-level I/O as” on page 6-131

“Suppress error status in real-time model data structure” on page 6-133
“Configure Functions” on page 6-135

“Create Simulink (S-Function) block” on page 6-136
“Enable portable word sizes” on page 6-138
“MAT-file logging” on page 6-140

“MAT-file variable name modifier” on page 6-142
“Interface” on page 6-144

“Signals in C API” on page 6-146

“Parameters in C API” on page 6-147

“Transport layer” on page 6-148

“MEX-file arguments” on page 6-150

“Static memory allocation” on page 6-152

“Static memory buffer size” on page 6-154

6-104

Real-Time Workshop Pane: Interface

Interface Tab Overview

Select the target software environment, output variable name modifier, and
data exchange interface.

See Also
Configuring Model Interfaces

6-105

6 Contfiguration Parameters

6-106

Target function library
Specify a target-specific math library for your model.

Settings
Default: C89/C90 (ANSI)

C89/C90 (ANSI)
Generates calls to the ISO/IEC 9899:1990 C standard math library for
floating-point functions.

C99 (ISO)
Generates calls to the ISO/IEC 9899:1999 C standard math library.

GNU99 (GNU)
Generates calls to the GNU gcc math library, which provides C99
extensions as defined by compiler option -std=gnu99.

Note Additional Target function library values may be listed if you have
created and registered target function libraries with Real-Time Workshop
Embedded Coder, or if you have licensed any Link or Target products. For
more information on the Target function library values for Link or Target
products, see your Link or Target product documentation.

Tip

Before setting this parameter, verify that your compiler supports the library
you want to use. If you select a parameter value that your compiler does not
support, compiler errors can occur.

Command-Line Information

Parameter: GenFloatMathFcnCalls

Type: string

Value: 'ANSI_C' | 'C99 (ISO)' | 'GNU99 (GNU)'
Default: 'ANSI_C'

Real-Time Workshop Pane: Interface

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

No impact

Any valid library

No impact

See Also
Configuring Model Interfaces

6-107

6 Contfiguration Parameters

Utility function generation

Specify the location for generating utility functions.

Settings
Default: Auto

Auto
Operates as follows:

® When the model contains Model blocks, place utilities within the
slprj/target/ sharedutils directory.

¢ When the model does not contain Model blocks, place utilities in the
build directory (generally, in model.c or model.cpp).

Shared location
Directs code for utilities to be placed within the slprj directory in your
working directory.

Command-Line Information

Parameter: UtilityFuncGeneration
Type: string

Value: 'Auto' | 'Shared location'
Default: 'Auto’

Recommended Settings

Application Setting
Debugging Shared location
Traceability Shared location
Efficiency Shared location
Safety precaution No impact

See Also

Configuring Model Interfaces

6-108

Real-Time Workshop Pane: Interface

Support: floating-point numbers

Specify whether to generate floating-point data and operations.

Settings
Default: on

¥ On
Generates floating-point data and operations.

I off
Generates pure integer code. If you clear this option, an error occurs if
the code generator encounters floating-point data or expressions. The
error message reports offending blocks and parameters.

Dependencies

¢ This parameter only appears for ERT-based targets.

e Selecting this parameter enables Support: non-finite numbers and
clearing this parameter disables Support: non-finite numbers.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: PurelyIntegerCode
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

6-109

6 Configuration Parameters

Efficiency Off (for integer only)

Safety precaution No impact

6-110

Real-Time Workshop Pane: Interface

Support: absolute time

Specify whether to generate and maintain integer counters for absolute and
elapsed time values.

Settings
Default: on

v On
Generates and maintains integer counters for blocks that require
absolute or elapsed time values. Absolute time is the time from the
start of program execution to the present time. An example of elapsed
time is time elapsed between two trigger events.

If you select this option and the model does not include blocks that use
time values, the target does not generate the counters.

I off
Does not generate integer counters to represent absolute or elapsed
time values. If you do not select this option and the model includes
blocks that require absolute or elapsed time values, an error occurs
during code generation.

Dependencies

¢ This parameter only appears for ERT-based targets.

® You must select this parameter if your model includes blocks that require
absolute or elapsed time values.

Command-Line Information

Parameter: SupportAbsoluteTime
Type: string

Value: 'on' | 'off'

Default: 'on'

6-111

6 Contfiguration Parameters

6-112

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting
No impact
No impact
Off

Off

See Also
Timing Services

Real-Time Workshop Pane: Interface

Support: non-finite numbers

Specify whether to generate nonfinite data and operations.

Settings
Default: on

IFOn

Generates nonfinite data (for example, NaN and Inf) and related
operations.

I off
Does not generate nonfinite data and operations. If you clear this
option, an error occurs if the code generator encounters nonfinite
data or expressions. The error message reports offending blocks and
parameters.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter is enabled by Support: floating-point numbers.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SupportNonFinite
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

6-113

6 Configuration Parameters

Efficiency Off
Safety precaution Off

6-114

Real-Time Workshop Pane: Interface

Support: continuous time
Specify whether to generate code for blocks that use continuous time.

Settings
Default: off

¥ on
Generates code for blocks that use continuous time.
I ofr
Does not generate code for blocks that use continuous time. If you do

not select this option and the model includes blocks that use continuous
time, an error occurs during code generation.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter must be on if your model includes blocks that require
absolute or elapsed time values.

® This parameter must be off when generating an S-function wrapper for an
ERT target; the code generator does not support continuous time for this
target scenario.

Command-Line Information

Parameter: SupportContinuousTime
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

6-115

6 Contfiguration Parameters

Application Setting

Efficiency Off

Safety precaution Off
See Also

® Support for Continuous Time Blocks, Continuous Solvers, and Stop Time

® Automatic S-Function Wrapper Generation

6-116

Real-Time Workshop Pane: Interface

Support: complex numbers
Specify whether to generate complex data and operations.

Settings
Default: on

I7On

Generates complex numbers and related operations.

I off
Does not generate complex data and related operations. If you clear
this option, an error occurs if the code generator encounters complex
data or expressions. The error message reports offending blocks and
parameters.

Dependencies

¢ This parameter only appears for ERT-based targets.

® This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SupportComplex
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Off (for real only)
Safety precaution No impact

6-117

6 Contfiguration Parameters

6-118

Support: non-inlined S-functions

Specify whether to generate code for noninlined S-functions.

Settings
Default: off

0 On
Generates code for noninlined S-functions.

I ofr
Does not generate code for noninlined S-functions. If you do not select
this option and the model includes a C MEX S-function that does not
have a corresponding TLC implementation (for inlining), an error occurs
during the build process.

Tip
Inlining S-functions is highly advantageous in production code generation, for

example, for implementing device drivers. In such cases, clear this option to
enforce use of inlined S-functions for code generation.

Dependencies

¢ This parameter only appears for ERT-based targets.

® Selecting this parameter also selects Support: floating-point numbers
and Support: non-finite numbers. If you subsequently clear Support:
floating-point numbers or Support: non-finite numbers, a warning is
displayed during code generation.

Command-Line Information

Parameter: SupportNonInlinedSFcns
Type: string

Value: 'on' | 'off'

Default: 'off'

Real-Time Workshop Pane: Interface

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting
No impact
No impact
Off

Off

See Also

Automatic S-Function Wrapper Generation

6-119

6 Contfiguration Parameters

6-120

GRT compatible call interface

Specify whether to generate model function calls compatible with the main
program module of the GRT target.

Settings
Default: off
0 On

Generates model function calls that are compatible with the main
program module of the GRT target (grt_main.c or grt_main.cpp).

This option provides a quick way to use ERT target features with a
GRT-based custom target that has a main program module based on
grt_main.c or grt_main.cpp.

I off
Disables the GRT compatible call interface.

Tips
The following are unsupported:
® Data type replacement

® Nonvirtual subsystem option Function with separate data

Dependencies

® This parameter only appears for ERT-based targets.

® Selecting this parameter also selects the required option Support:
floating-point numbers. If you subsequently clear Support:
floating-point numbers, an error is displayed during code generation.

® Selecting this parameter disables the incompatible option Single
output/update function. Clearing this parameter enables Single
output/update function.

Real-Time Workshop Pane: Interface

Command-Line Information

Parameter: GRTInterface
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability Off
Efficiency Off
Safety precaution Off

See Also

Support for Continuous Time Blocks, Continuous Solvers, and Stop Time

6-121

6 Contfiguration Parameters

6-122

Single output/update function

Specify whether to generate the model step function.

Settings
Default: on

¥ On
Generates the model step function for a model. This function contains
the output and update function code for all blocks in the model and is
called by rt_OneStep to execute processing for one clock period of the
model at interrupt level.

I off
Does not combine output and update function code for model blocks in a
single function. Generates the code in model.output and model.update.

Tips
Errors or unexpected behavior can occur if a Model block is part of a cycle, the

Model block is a direct feedthrough block, and an algebraic loop results. See
“Model Blocks and Direct Feedthrough” for details.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter and GRT compatible call interface are mutually
incompatible and cannot both be selected through the GUI. Selecting GRT
compatible call interface disables this parameter and clearing GRT
compatible call interface enables this parameter.

® When you use this parameter, you must clear the option Minimize
algebraic loop occurrences on the Model Referencing pane.

Real-Time Workshop Pane: Interface

Command-Line Information

Parameter: CombineOutputUpdateFcns
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency On
Safety precaution On
See Also
rt_OneStep

6-123

6 Contfiguration Parameters

6-124

Terminate function required
Specify whether to generate the model terminate function.

Settings
Default: on

¥ On
Generates a model terminate function. This function contains all
model termination code and should be called as part of system shutdown.

I off
Does not generate a model.terminate function. Suppresses the
generation of this function if you designed your application to run
indefinitely and does not require a terminate function.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: IncludeMdlTerminateFcn
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Off
Safety precaution Off

Real-Time Workshop Pane: Interface

See Also
model_terminate

6-125

6 Contfiguration Parameters

Generate reusable code
Specify whether to generate reusable, reentrant code.

Settings
Default: off

v On
Generates reusable, multi-instance code that is reentrant. The code
generator passes model data structures (root-level inputs and outputs,
block states, parameters, and external outputs) in, by reference, as
arguments to model_step and other the model entry point functions.
The data structures are also exported with model .h. For efficiency, the
code generator passes in only data structures that are used. Therefore,
when you select this option, the argument lists generated for the entry
point functions vary according to model requirements.

I off
Does not generate reusable code. Model data structures are statically
allocated and accessed by model entry point functions directly in the
model code.

Tips

® Entry points are exported with model.h. To call the entry-point functions
from hand-written code, add an #include model.h directive to the code. If
this option is selected, you must examine the generated code to determine
the calling interface required for these functions.

e When this option is selected, the code generator generates a pointer to the
real-time model object (model_M).

* In some cases, when this option is selected, the code generator might
generate code that compiles but is not reentrant. For example, if any signal,
DWork structure, or parameter data has a storage class other than Auto,
global data structures are generated.

Dependencies

¢ This parameter only appears for ERT-based targets.

6-126

Real-Time Workshop Pane: Interface

® This parameter enables Reusable code error diagnostic and Pass
root-level I/O as.

® You must clear this option if you are using:
= The static ert_main.c module, rather than generating a main program
= The model_ step function prototype control capability
= The subsystem parameter Function with separate data
= A subsystem that
» Has multiple ports that share the same source

» Has a port used by multiple instances has different sample times, data
types, complexity, frame status, or dimension across the instances

» Has output marked as a global signal

e For each instance contains identical blocks with different names or
parameter settings

¢ This parameter has no effect on code generated for function-call subsystems.

Command-Line Information

Parameter: MultiInstanceERTCode
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (for single instance)
Safety precaution No impact

6-127

6 Contfiguration Parameters

6-128

See Also

® Model Entry Points

® Nonvirtual Subsystem Code Generation

® Code Reuse Limitations

® Determining Why Subsystem Code Is Not Reused

® Writing S-Functions That Support Code Reuse

e Static Main Program Module

® Controlling model_step Function Prototypes

¢ Nonvirtual Subsystem Modular Function Code Generation
¢ Exporting Function-Call Subsystems

® model_step

Real-Time Workshop Pane: Interface

Reusable code error diagnostic

Select the severity level for diagnostics displayed when a model violates
requirements for generating reusable code.

Settings
Default: Error

None
Proceed with build without displaying a diagnostic message.

Warning
Proceed with build after displaying a warning message.

Error
Abort build after displaying an error message.

Under certain conditions, Real-Time Workshop Embedded Coder might

® Generate code that compiles but is not reentrant. For example, if signal,
DWork structure, or parameter data has a storage class other than Auto,
global data structures are generated.

* Be unable to generate valid and compilable code. For example, if the model
contains an S-function that is not code-reuse compliant or a subsystem
triggered by a wide function-call trigger, the coder generates invalid code,
displays an error message, and terminates the build.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter is enabled by Generate reusable code.

Command-Line Information

Parameter: MultiInstanceErrorCode
Type: string

Value: 'None' | 'Warning' | 'Error'
Default: 'Error'

6-129

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging Warning or Error
Traceability No impact
Efficiency None
Safety precaution No impact

See Also

Model Entry Points

Nonvirtual Subsystem Code Generation

Code Reuse Limitations

¢ Determining Why Subsystem Code Is Not Reused

Nonvirtual Subsystem Modular Function Code Generation

6-130

Real-Time Workshop Pane: Interface

Pass root-level 1/0 as

Control how root-level model input and output are passed to the model step

function.

Settings
Default: Individual arguments

Individual arguments

Passes each root-level model input and output value to model_step as a

separate argument.

Structure reference

Packs all root-level model input into a struct and passes struct to
model step as an argument. Similarly, packs root-level model output
into a second struct and passes it to model_step.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter is enabled by Generate reusable code.

Command-Line Information

Parameter: RootIOFormat
Type: string

Value: 'Individual arguments' | 'Structure reference'
Default: 'Individual arguments'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

6-131

6 Contfiguration Parameters

See Also

® Model Entry Points
® Nonvirtual Subsystem Code Generation

¢ Nonvirtual Subsystem Modular Function Code Generation

® model_step

6-132

Real-Time Workshop Pane: Interface

Suppress error status in real-time model data
structure

Specify whether to log or monitor error status.

Settings
Default: off

IFOn

Omits the error status field from the generated real-time model data
structure rtModel. This option reduces memory usage.

Selecting this option can cause the code generator to completely omit
the rtModel data structure from generated code.

I of
Includes an error status field in the generated real-time model data
structure rtModel. You can use available macros to monitor the field for
or set it with error message data.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter is cleared if you select the incompatible option MAT-file
logging. If you subsequently select this parameter, an error is displayed
during code generation.

¢ Selecting this parameter clears Support: continuous time.

e Setting of this parameter for multiple integrated models must match to
avoid unexpected application behavior. For example, if you select the option
for one model but not in another, an error status might not get registered
by the integrated application.

6-133

6 Contfiguration Parameters

Command-Line Information

Parameter: SuppressErrorStatus
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability No impact
Efficiency On
Safety precaution On

See Also

rtModel Accessor Macros

6-134

Real-Time Workshop Pane: Interface

Configure Functions

Use the Configure Functions button to open the Model Step Functions
dialog box. This dialog box provides a way for you to specify whether the code
generator is to use a default model_ step function prototype or a model-specific
C prototype. Based on your selection, you can preview and modify the
function prototype.

Dependency
This parameter only appears for ERT-based targets.

See Also

¢ Controlling model_step Function Prototypes
® model_step

® Model Step Functions Dialog Box

6-135

6 Contfiguration Parameters

6-136

Create Simulink (S-Function) block
Specify whether to generate an S-function block.

Settings
Default: off

v On
Generates an S-function block to represent the model or subsystem.
The coder generates an inlined C or C++ MEX S-function wrapper
that calls existing hand-written code or code previously generated
by Real-Time Workshop from within Simulink. S-function wrappers
provide a standard interface between Simulink and externally written
code, allowing you to integrate your code into a model with minimal
modification.

When this option is selected, Real-Time Workshop:

1 Generates the S-function wrapper file model sf.c (or .cpp) and
places it in the build directory.

2 Builds the MEX-file model_sf.mexext and places it in your working
directory.

3 Creates and opens an untitled model containing the generated
S-Function block.

I off
Does not generate an S-function block.

Dependency
This parameter only appears for ERT-based targets.

Command-Line Information

Parameter: GenerateErtSFunction
Type: string

Value: 'on' | 'off'

Default: 'off'

Real-Time Workshop Pane: Interface

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Automatic S-Function Wrapper Generation
¢ Techniques for Exporting Function-Call Subsystems

¢ Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes

6-137

6 Contfiguration Parameters

Enable portable word sizes

Specify whether to allow portability across host and target processors that
support different word sizes.

Settings
Default: off

I7On

Generates conditional processing macros that support compilation of
generated code on a processor that supports a different word size than
the target processor on which production code is intended to run (for
example, a 32-bit host and a 16-bit target. This allows you to use the
same generated code for both software-in-the-loop (SIL) testing on the
host platform and production deployment on the target platform.

I off
Does not generate portable code.

Dependencies

¢ This parameter only appears for ERT-based targets.
® When you use this parameter, you should:
= Select Create Simulink (S-Function) block

= Set Emulation hardware on the Hardware Implementation pane
to None

Command-Line Information

Parameter: PortableWordSizes
Type: string

Value: 'on' | 'off'

Default: 'off'

6-138

Real-Time Workshop Pane: Interface

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution No impact
See Also

¢ Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes

¢ Tips for Optimizing the Generated Code

6-139

6 Contfiguration Parameters

6-140

MAT-file logging
Specify whether to enable MAT-file logging.

Settings
Default: off

¥ On
Enables MAT-file logging. When you select this option, the code
generator saves system states, output, and simulation time at each
model execution time step. The data is written to a MAT-file, named (by
default) model.mat, where model is the name of your model.

I off
Disables MAT-file logging. Clearing this option has the following
benefits:

¢ Eliminates overhead associated with supporting a file system, which
typically is not needed for embedded applications

¢ Eliminates extra code and memory usage required to initialize,
update, and clean up logging variables

¢ Under certain conditions, eliminates code and storage associated
with root output ports

¢ Omits the comparison between the current time and stop time in
the model_step, allowing the generated program to run indefinitely,
regardless of the stop time setting

Dependencies

¢ This parameter only appears for ERT-based targets and the Tornado target.

¢ Selecting this parameter also selects the required options Support:
floating-point numbers, Support: non-finite numbers, and
Terminate function required. If you subsequently clear Support:
floating-point numbers, Support: non-finite numbers, or Terminate
function required, an error is displayed during code generation.

¢ Selecting this parameter clears the incompatible option Suppress error
status in real-time model data structure. If you subsequently select

Real-Time Workshop Pane: Interface

Suppress error status in real-time model data structure, an error is
displayed during code generation.

¢ Selecting this parameter enables MAT-file variable name modifier.

® (Clear this option if you are using exported function calls.

Command-Line Information

Parameter: MatFilelLogging
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

Using Virtualized Output Ports Optimization

6-141

6 Contfiguration Parameters

MAT-file variable name modifier
Select the string to add to MAT-file variable names.

Settings
Default: rt_

rt

Adds a prefix string.
rt

Adds a suffix string.

none
Does not add a string.

Dependency
When an ERT target is selected, this parameter is enabled by MAT-file
logging.

Command-Line Information

Parameter: LogVarNameModifier
Type: string

Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-142

Real-Time Workshop Pane: Interface

See Also
Data Logging

6-143

6 Contfiguration Parameters

6-144

Interface
Specify the data exchange interface (API) to include.

Settings
Default: None

None
Does not include an API in the generated code.

C-API
Uses the C-API data interface.

External mode
Uses an external data interface.

ASAP2
Uses the ASAP2 data interface.

Dependencies
Selecting C-API enables the following parameters:

e Signals in C API

¢ Parameters in C API
Selecting External mode enables the following parameters:

¢ Transport layer
¢ MEX-file arguments

¢ Static memory allocation

Real-Time Workshop Pane

. Interface

Command-Line Information

Parameter: see table
Type: string

Value: 'on' | 'off'
Default: 'off'

To enable... Set this parameter... To this value...

none RTWCAPIParams, "off!
RTWCAPISignals,
ExtMode,
GenerateASAP2

C API RTWCAPIParams | ‘on'
RTWCAPISignals

External mode ExtMode ‘on'

ASAP2 GenerateASAP2 ‘on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

None for production code generation

See Also

e (C-API for Interfacing with Signals and Parameters

¢ External Mode
¢ Using External Mode with the ERT Target

6-145

6 Contfiguration Parameters

Signals in C API

Generate a C API signal structure.

Settings
Default: on

v On
Generates C API for global block outputs.

I off
Does not generate C API signals.

Dependency

This parameter is enabled by selecting Interface > C-API.

Command-Line Information

Parameter: RTWCAPISignals
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

C-API for Interfacing with Signals and Parameters

6-146

Real-Time Workshop Pane: Interface

Parameters in C API
Generate C API parameter tuning structures.

Settings
Default: on

¥ on
Generates C API for global block and model parameters.

I off
Does not generate C API parameters.

Dependency

This parameter is enabled by selecting Interface > C-API.

Command-Line Information

Parameter: RTWCAPIParams
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

C-API for Interfacing with Signals and Parameters

6-147

6 Contfiguration Parameters

6-148

Transport layer
Specify the transport protocol for external mode communications.

Settings
Default: tcpip
tepip

Applies a TCP/IP transport mechanism. The MEX-file name is
ext_comm.

serial_win32
Applies a serial transport mechanism. The MEX-file name is
ext_serial_win32_comm.

Tips

¢ The MEX-file is specified in extmode-transports.m.
¢ The MEX-file cannot be edited.

Dependency

This parameter is enabled by selecting External mode in the Interface
parameter.

Command-Line Information

Parameter: ExtModeTransport
Type: integer

Value: 0 | 1

Default: 0

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Real-Time Workshop Pane: Interface

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

¢ Creating an External Mode Communication Channel

® Target Interfacing

6-149

6 Contfiguration Parameters

MEX-file arguments

Specify arguments to pass to an external mode interface MEX-file for
communicating with executing targets.

Settings
Default: ""

For TCP/IP interfaces, ext_comm allows three optional arguments:

® Network name of your target (for example, 'myPuter' or '148.27.151.12")

® Verbosity level (0 for no information or 1 for detailed information)

e TCP/IP server port number (an integer value between 256 and 65535, with
a default of 17725)

For a serial transport, ext_serial win32_comm allows three optional
arguments:

® Verbosity level (0 for no information or 1 for detailed information)

e Serial port ID (for example, 1 for COM1, and so on)

® Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default baud rate of 57600)

Dependency

Depending on the specified target, this parameter is enabled by Data
Exchange > Interface > External mode or by External Mode.

Command-Line Information

Parameter: ExtModeMexArgs
Type: string

Value: any valid arguments
Default: ""

6-150

Real-Time Workshop Pane: Interface

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

e Target Interfacing

¢ (Client/Server Implementations

6-151

6 Contfiguration Parameters

6-152

Static memory allocation

Control memory buffer for external mode communication.

Settings
Default: off

I7On

Enables the Static memory buffer size parameter for allocating
dynamic memory.

I off
Uses a static memory buffer for external mode instead of allocating
dynamic memory (calls to malloc).

Tip
To determine how much memory you need to allocate, select verbose mode

on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependencies
¢ Depending on the specified target, this parameter is enabled by Data
Exchange > Interface > External mode or by External Mode.

¢ This parameter enables Static memory buffer size.

Command-Line Information

Parameter: ExtModeStaticAlloc
Type: string

Value: 'on' | 'off'

Default: 'off'

Real-Time Workshop Pane: Interface

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also
External Mode Interface Options

6-153

6 Contfiguration Parameters

6-154

Static memory buffer size
Specify the memory buffer size for external mode communication.

Settings
Default: 1000000

Enter the number of bytes to preallocate for external mode communications
buffers in the target.

Tips
¢ If you enter too small a value for your application, external mode issues an
out-of-memory error.

¢ To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependency

This parameter is enabled by Static memory allocation.

Command-Line Information

Parameter: ExtModeStaticAllocSize
Type: integer

Value: any valid value

Default: 1000000

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Real-Time Workshop Pane: Interface

See Also
External Mode Interface Options

6-155

6 Contfiguration Parameters

Real-Time Workshop Pane: RSim Target

Real-Time Workzhop

Enmmentsl S_I,Iml:u:ulsl Custom I:::u:IEI Del:uugl Interface RSim Target |4 »

— Parameter loading

¥ Enable BSim executable to load parameters from a MAT file

— Salver

Solver zelection; |auto - |

— Storage clazse

¥ Force storage classes o AUTO

[T Generate code only Build

Hewert Help Apply

In this section...

“RSim Target Tab Overview” on page 6-158

“Enable RSim executable to load parameters from a MAT-file” on page 6-159

6-156

Real-Time Workshop Pane: RSim Target

In this section...

“Solver selection” on page 6-160

“Force storage classes to AUTO” on page 6-162

6-157

6 Contfiguration Parameters

6-158

RSim Target Tab Overview

Set configuration parameters for rapid simulation.

Configuration
This tab appears only if you specify the rsim.tlc system target file.

See Also

¢ Configuring and Building a Model for Rapid Simulation

¢ Running Rapid Simulations

Real-Time Workshop Pane: RSim Target

Enable RSim executable to load parameters from a
MAT-file
Specify whether to load RSim parameters from a MAT-file.

Settings
Default: on

¥ On
Enables RSim to load parameters from a MAT-file.

I off
Disables RSim from loading parameters from a MAT-file.

Command-Line Information

Parameter: RSIM_PARAMETER_LOADING
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Creating a MAT-File That Includes a Model’s Parameter Structure

6-159

6 Contfiguration Parameters

6-160

Solver selection
Instruct the target how to select the solver.

Settings
Default: auto

auto
Lets the target choose the solver. The target uses the Simulink
solver module if you specify a variable-step solver on the Solver pane.
Otherwise, the target uses a Real-Time Workshop built-in solver.

Use Simulink solver module
Instructs the target to use the variable-step solver that you specify on
the Solver pane.

Use Real-Time Workshop fixed-step solvers
Instructs the target to use the fixed-step solver that you specify on the
Solver pane.

Tip
A Simulink license is checked out at run time if the executable includes the
Simulink solver module.

Command-Line Information

Parameter: RSIM_SOLVER_SELECTION

Type: string

Value: 'auto' | 'usesolvermodule' | 'usefixstep'
Default: 'auto’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Real-Time Workshop Pane: RSim Target

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

Licensing Protocols for Simulink Solvers in RSim Executables

6-161

6 Contfiguration Parameters

Force storage classes to AUTO

Specify whether to retain your storage class settings in a model or to use
the automatic settings.

Settings
Default: on

v On
Forces Simulink to determine all storage classes.

I off
Causes the model to retain storage class settings.

Tips

® Turn this parameter on for flexible custom code interfacing.

¢ Turn this parameter off when it is necessary to retain storage class settings
such as ExportedGlobal or ImportExtern.

Command-Line Information

Parameter: RSIM_STORAGE_CLASS_AUTO
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-162

Real-Time Workshop Pane: RSim Target

See Also
Licensing Protocols for Simulink Solvers in RSim Executables

6-163

6 Contfiguration Parameters

Real-Time Workshop Pane: Real-Time Workshop
S-Function Code Generation Options

Real-Time Workshop

Custom Code I Debug Feal-Time "Warkshop S-Function Code Generation Options | 1 |

¥ Create new model

[Uze value for tunable parameters

[T Generate code anly Build

Fiewert Help Apply

6-164

Real-Time Workshop Pane: Real-Time Workshop S-Function Code Generation Options

In this section...

“Real-Time Workshop S-Function Code Generation Options Tab Overview”
on page 6-166

“Create new model” on page 6-167

“Use value for tunable parameters” on page 6-168

6-165

6 Contfiguration Parameters

Real-Time Workshop S-Function Code Generation
Options Tab Overview

Control the code generated by Real-Time Workshop for the S-function target
(rtwsfcn.tle).

Configuration
This tab appears only if you specify the S-function target (rtwsfcn.tlc)
System target file. .

See Also
The S-Function Target

6-166

Real-Time Workshop Pane: Real-Time Workshop S-Function Code Generation Options

Create new model

Create a new model containing the generated Real-Time Workshop S-function
block.

Settings
Default: on

I7On

Creates a new model, separate from the current model, containing the
generated Real-Time Workshop S-function block.

™ off
Generates code but a new model is not created.

Command-Line Information

Parameter: CreateModel
Type: string

Value: 'on' | 'off'
Default: 'on'

See Also
The S-Function Target

6-167

6 Contfiguration Parameters

6-168

Use value for tunable parameters

Use the variable value instead of the variable name in generated block mask
edit fields for tunable parameters.

Settings
Default: off

¥ On
Uses variable values for tunable parameters instead of the variable
name in the generated block mask edit fields.

I ofr

Uses variable names for tunable parameters in the generated block
mask edit fields.

Command-Line Information

Parameter: UseParamValues
Type: string

Value: 'on' | 'off'
Default: 'off'

See Also
The S-Function Target

Real-Time Workshop Pane: Tornado Target

Real-Time Workshop Pane: Tornado Target

Real-Time Workshop

Gerneral I Comments I Sernbaols I Cusgtom Code I Cebug Tomado Target |

— Saftware envirohment

T arget Function Librany: IEEEIHI:EIEI [&MS1

Itility Function generatiunl.-’-‘-.uh:u

— Tormado
[~ MAT-file logging
MAT -file waniable narme modifier: Irt_ LI

Code Format|RealTime LI

[T StethoScope
[T Download o Yworks target

— Yol

Baze tazk, pril:urityISEl

Task stack size|15384

— External mode option

[T External mode

[T Generate code anly Build

Bewert Help Apply

In this section...

“Tornado Target Tab Overview” on page 6-171
“Target function library” on page 6-172

“Utility function generation” on page 6-174

6-169

6 Contfiguration Parameters

In this section...

“MAT-file logging” on page 6-175

“MAT-file variable name modifier” on page 6-177
“Code Format” on page 6-179

“StethoScope” on page 6-180

“Download to VxWorks target” on page 6-182
“Base task priority” on page 6-184

“Task stack size” on page 6-186

“External mode” on page 6-187

“Transport layer” on page 6-189

“MEX-file arguments” on page 6-191

“Static memory allocation” on page 6-193

“Static memory buffer size” on page 6-195

6-170

Real-Time Workshop Pane: Tornado Target

Tornado Target Tab Overview
Control the code generated by Real-Time Workshop for the Tornado Target.

Configuration
This tab appears only if you specify tornado.tlc as the System target file.

See Also

e Tornado User’s Guide from Wind River Systems
e StethoScope User’s Guide from Wind River Systems
e Targeting Tornado for Real-Time Applications

6-171

http://www.windriver.com/
http://www.windriver.com/

6 Contfiguration Parameters

6-172

Target function library
Specify a target-specific math library for your model.

Settings
Default: C89/C90 (ANSI)

C89/C90 (ANSI)
Generates calls to the ISO/IEC 9899:1990 C standard math library for
floating-point functions.

C99 (ISO)
Generates calls to the ISO/IEC 9899:1999 C standard math library.

GNU99 (GNU)
Generates calls to the GNU gcc math library, which provides C99
extensions as defined by compiler option -std=gnu99.

Tip

Before setting this parameter, verify that your compiler supports the library
you want to use. If you select a parameter value that your compiler does not
support, compiler errors can occur.

Command-Line Information

Parameter: GenFloatMathFcnCalls

Type: string

Value: 'ANSI_C' | 'C99 (ISO)' | 'GNU99 (GNU)'
Default: 'ANSI C'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Any valid library
Safety precaution No impact

Real-Time Workshop Pane: Tornado Target

See Also
Configuring Model Interfaces

6-173

6 Contfiguration Parameters

Utility function generation

Specify the location for generating utility functions.

Settings
Default: Auto

Auto
Operates as follows:

® When the model contains Model blocks, place utilities within the
slprj/target/ sharedutils directory.

¢ When the model does not contain Model blocks, place utilities in the
build directory (generally, in model.c or model.cpp).

Shared location
Directs code for utilities to be placed within the slprj directory in your
working directory.

Command-Line Information

Parameter: UtilityFuncGeneration
Type: string

Value: 'Auto' | 'Shared location'
Default: 'Auto’

Recommended Settings

Application Setting
Debugging Shared location
Traceability Shared location
Efficiency Shared location
Safety precaution No impact

See Also

Configuring Model Interfaces

6-174

Real-Time Workshop Pane: Tornado Target

MAT-file logging
Specify whether to enable MAT-file logging.

Settings
Default: off

¥ On
Enables MAT-file logging. When you select this option, the code
generator saves system states, output, and simulation time at each
model execution time step. The data is written to a MAT-file, named (by
default) model.mat, where model is the name of your model.

I off
Disables MAT-file logging. Clearing this option has the following
benefits:

¢ Eliminates overhead associated with supporting a file system, which
typically is not needed for embedded applications

¢ Eliminates extra code and memory usage required to initialize,
update, and clean up logging variables

¢ Under certain conditions, eliminates code and storage associated
with root output ports

¢ Omits the comparison between the current time and stop time in
the model_step, allowing the generated program to run indefinitely,
regardless of the stop time setting

Dependencies
This parameter only appears for ERT-based targets and the Tornado target.

Command-Line Information

Parameter: MatFilelLogging
Type: string

Value: 'on' | 'off'
Default: 'off'

6-175

6 Contfiguration Parameters

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

Using Virtualized Output Ports Optimization

6-176

Real-Time Workshop Pane: Tornado Target

MAT-file variable name modifier
Select the string to add to the MAT-file variable names.

Settings
Default: rt_

rt

Adds a prefix string.
rt

Adds a suffix string.

none
Does not add a string.

Dependency
When an ERT target is selected, this parameter is enabled by MAT-file
logging.

Command-Line Information

Parameter: LogVarNameModifier
Type: string

Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-177

6 Contfiguration Parameters

See Also
Data Logging

6-178

Real-Time Workshop Pane: Tornado Target

Code Format
Specify the code generation format.

Settings
Default: RealTime
RealTime
Specifies the Real-Time code generation format.

RealTimeMalloc
Specifies the Real-Time Malloc code generation format.

Command-Line Information

Parameter: CodeFormat

Type: string

Value: 'RealTime' | 'RealTimeMalloc'
Default: 'RealTime'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Targeting Tornado for Real-Time Applications

6-179

6 Contfiguration Parameters

6-180

StethoScope

Specify whether to enable StethoScope, an optional data acquisition and data
monitoring tool.

Settings
Default: off

v On
Enables StethoScope.

I off
Disables StethoScope.

Tips

You can optionally monitor and change the parameters of the executing
real-time program using either StethoScope or Simulink external mode, but
not both with the same compiled image.

Dependencies

Enabling StethoScope automatically disables External mode, and vice
versa.

Command-Line Information

Parameter: StethoScope
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability No impact

Real-Time Workshop Pane: Tornado Target

Application Setting

Efficiency Off

Safety precaution Off
See Also

e Tornado User’s Guide from Wind River Systems

StethoScope User’s Guide from Wind River Systems
® Targeting Tornado for Real-Time Applications

StethoScope Tasks

StethoScope Monitoring

6-181

http://www.windriver.com/
http://www.windriver.com/

6 Contfiguration Parameters

6-182

Download to VxWorks target

Specify whether to automatically download the generated program to the
VxWorks target.

Settings
Default: off

v On
Automatically downloads the generated program to VxWorks after
each build.

I o
Does not automatically download to VxWorks, you must downloaded
generated programs manually.

Tips

® Automatic download requires specifying the target name and host name in
the makefile, as described in Configuring for Automatic Downloading.

® Before every build, reset VxWorks by pressing Ctrl+X on the host console
or power-cycling the VxWorks chassis. This ensures that no dangling
processes or stale data exist in VxWorks when the automatic download
occurs.

Command-Line Information

Parameter: DownloadToVxWorks
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Real-Time Workshop Pane: Tornado Target

Application Setting
Efficiency No impact
Safety precaution Off

See Also

e Tornado User’s Guide from Wind River Systems
® Targeting Tornado for Real-Time Applications

® Configuring for Automatic Downloading

Building the Application

e Automatic Download and Execution

6-183

http://www.windriver.com/

6 Contfiguration Parameters

Base task priority

Specify the priority with which the base rate task for the model is to be
spawned.

Settings
Default: 30

Tips
¢ For a multirate, multitasking model, Real-Time Workshop increments the
priority of each subrate task by one.

¢ The value you specify for this option will be overridden by a base priority
specified in a call to the rt_main() function spawned as a task.

Command-Line Information

Parameter: BasePriority
Type: integer

Value: any valid value
Default: 30

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency May affect efficiency, depending on other
task’s priorities
Safety precaution No impact
See Also

e Tornado User’s Guide from Wind River Systems

6-184

http://www.windriver.com/

Real-Time Workshop Pane: Tornado Target

® Targeting Tornado for Real-Time Applications

6-185

6 Contfiguration Parameters

6-186

Task stack size
Stack size in bytes for each task that executes the model.

Settings
Default: 16384

Command-Line Information

Parameter: TaskStackSize
Type: integer

Value: any valid value
Default: 16384

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Larger stack may waste space
Safety precaution Larger stack reduces the possibility of
overflow
See Also

e Tornado User’s Guide from Wind River Systems
® Targeting Tornado for Real-Time Applications
e Task Stack Size

http://www.windriver.com/

Real-Time Workshop Pane: Tornado Target

External mode

Specify whether to enable communication between Simulink and an
application based on a client/server architecture.

Settings
Default: on
v On

Enables external mode. The client (Simulink) transmits messages
requesting the server (application) to accept parameter changes or to
upload signal data. The server responds by executing the request.

™ off
Disables external mode.

Dependencies

Selecting this parameter enables:
¢ Transport layer

¢ MEX-file arguments

¢ Static memory allocation

Command-Line Information

Parameter: ExtMode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

6-187

6 Contfiguration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

External Mode

6-188

Real-Time Workshop Pane: Tornado Target

Transport layer
Specify the transport protocol for external mode communications.

Settings
Default: tcpip

tepip
Applies a TCP/IP transport mechanism. The MEX-file name is
ext_comm.

Tips

¢ The MEX-file is specified in extmode-transports.m.
¢ The MEX-file cannot be edited.

Dependency
This parameter is enabled by External Mode.

Command-Line Information

Parameter: ExtModeTransport
Type: integer

Value: 0 | 1

Default: 0

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-189

6 Contfiguration Parameters

See Also

¢ Creating an External Mode Communication Channel

o Target Interfacing

6-190

Real-Time Workshop Pane: Tornado Target

MEX-file arguments

Specify arguments to pass to an external mode interface MEX-file for
communicating with executing targets.

Settings
Default: ""

For TCP/IP interfaces, ext_comm allows three optional arguments:

® Network name of your target (for example, 'myPuter' or '148.27.151.12")
® Verbosity level (0 for no information or 1 for detailed information)

e TCP/IP server port number (an integer value between 256 and 65535, with
a default of 17725)

Dependency
This parameter is enabled by External Mode.

Command-Line Information

Parameter: ExtModeMexArgs
Type: string

Value: any valid arguments
Default: ""

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-191

6 Contfiguration Parameters

See Also

o Target Interfacing

¢ (Client/Server Implementations

6-192

Real-Time Workshop Pane: Tornado Target

Static memory allocation

Control the memory buffer for external mode communication.

Settings
Default: off

I7On

Enables the Static memory buffer size parameter for allocating
allocate dynamic memory.

I off
Uses a static memory buffer for external mode instead of allocating
dynamic memory (calls to malloc).

Tip
To determine how much memory you need to allocate, select verbose mode

on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependencies

¢ This parameter is enabled by External Mode.

¢ This parameter enables Static memory buffer size.

Command-Line Information

Parameter: ExtModeStaticAlloc
Type: string

Value: 'on' | 'off'

Default: 'off'

6-193

6 Contfiguration Parameters

6-194

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also
External Mode Interface Options

Real-Time Workshop Pane: Tornado Target

Static memory buffer size
Specify the memory buffer size for external mode communication.

Settings
Default: 1000000

Enter the number of bytes to preallocate for external mode communications
buffers in the target.

Tips
¢ If you enter too small a value for your application, external mode issues an
out-of-memory error.

¢ To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependency

This parameter is enabled by Static memory allocation.

Command-Line Information

Parameter: ExtModeStaticAllocSize
Type: integer

Value: any valid value

Default: 1000000

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

6-195

6 Contfiguration Parameters

See Also
External Mode Interface Options

6-196

Parameter Reference

Parameter Reference

Mapping of Application Requirements to Configuration Parameters

In this section...

“Recommended Settings Summary” on page 6-197

“Parameter Command-Line Information Summary” on page 6-203

Recommended Settings Summary

The following table summarizes the impact of each configuration parameter
on debugging, traceability, efficiency, and safety considerations, and indicates
the default (factory) configuration settings for the GRT target. For additional
details, click the links in the Configuration Parameter column.

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default

“Solver Pane”

Start Time No impact | No impact No No impact 0.0 seconds
impact

Stop time No impact | Noimpact | No No impact 10.0 seconds
impact

Type No impact | Noimpact | No Fixed step Variable step
impact

Tasking mode for | No impact | No impact No No impact Auto

periodic sample impact

times

“Data Import/Export Pane”

Save to Maybe Maybe Off No impact On

workspace

Save options Maybe Maybe No No impact On
impact

6-197

6 Contfiguration Parameters

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter

Debugging

Traceability

Efficiency

Safety
Precaution

Default

“Optimization Pane’

4

Block reduction

Off

Off

On

Off

Implement

logic signals as
Boolean data (vs.
double)

No impact

No impact

On

On

Inline
parameters

Off

No impact

Conditional
input branch
execution

No impact

On

Off

Signal storage
reuse

Off

Off

On

No impact

On

Application
lifespan (days)

No impact

No impact

Finite
value

inf

inf

Enable local
block outputs

Off

No impact

On

No impact

Ignore integer
downcasts

in folded
expressions

Off

No impact

On

Off

Eliminate
superfluous
temporary
variables
(Expression
folding)

Off

No impact

No impact

Loop unrolling
threshold

No impact

No impact

>0

>1

6-198

Parameter Reference

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default

Reuse block Off Off On No impact On

outputs

Inline invariant | Off Off On No impact Off

signals

Remove Off Off On Off Off

code from

floating-point

to integer

conversions

that wraps

out-of-range

values

“Diagnostics Pane: Data Validity”

Model No impact | Noimpact | No No impact Use local settings

Verification impact

block enabling

“Hardware Implementation Pane”

Device vendor No impact | No impact No No impact No impact
impact

, Device type No impact | Noimpact | No No impact No impact
impact

Number of bits No impact | No impact Target No impact 8, 16, 32, 32, 32
specific

Byte ordering No impact | No impact No No impact Unspecified
impact

Signed integer No impact | Noimpact | No No impact Undefined

division rounds impact

to

6-199

6 Contfiguration Parameters

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default

Shift right on a No impact | No impact On No impact On

signed integer as

arithmetic shift

Emulation No impact | No impact No No impact On

hardware (code impact

generation only)

“Real-Time Workshop Pane: General” on page 6-3

System target No impact | No impact No No impact grt.tlc

file impact

Language No impact | No impact No No impact C
impact

Generate HTML | On On No On Off

report impact

Launch report On On No No impact Off

automatically impact

Compiler Off Off On No impact Off

optimization

level

TLC options No impact | No impact No No impact .
impact

Generate No impact | No impact No No impact On

makefile impact

Make command No impact | No impact No No impact make_rtw
impact

Template No impact | No impact No No impact grt_default_tmf

makefile impact

Generate code Off No impact No No impact Off

only impact

“Real-Time Workshop Pane: Comments” on page 6-34

6-200

Parameter Reference

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default

Include On On No On On

comments impact

Simulink block On On No On On

comments impact

Show eliminated | On On No On Off

blocks impact

Verbose On On No On Off

comments for impact

Simulink Global

storage class

“Real-Time Workshop Pane: Symbols” on page 6-52

Maximum Any valid >30 No >30 31

identifier length | value impact

“Real-Time Workshop Pane: Custom Code” on page 6-84

Source file No impact | No impact No No impact Y
impact

Header file No impact | No impact No No impact e
impact

Initialize No impact | No impact No No impact v

function impact

Terminate No impact | No impact No No impact "

function impact

Include No impact | No impact No No impact v

directories impact

Source files No impact | No impact No No impact e
impact

Libraries No impact | No impact No No impact o
impact

6-201

6 Contfiguration Parameters

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default

“Real-Time Workshop Pane: Debug” on page 6-94

Verbose build On No impact No On On
impact

Retain .rtw file On No impact No No impact Off
impact

Start TLC On No impact No No impact Off

debugger when impact

generating code

Start TLC On No impact No No impact Off

coverage when impact

generating code

Enable TLC On No impact No On Off

assertion impact

“Real-Time Workshop Pane: Interface” on page 6-103

Target function No impact | No impact Any valid | No impact C89/C90 (ANSI)

library value

Utility function Shared Shared Shared No impact Auto

generation location location location

MAT-file variable | No impact | Noimpact | No No impact rt_

name modifier impact

Interface No impact | No impact No No impact None
impact

Signals in C API | No impact | No impact No No impact On
impact

Parameters in C | No impact | Noimpact | No No impact On

API impact

Transport layer No impact | No impact No No impact tcpip
impact

6-202

Parameter Reference

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety

Parameter Debugging| Traceability| Efficiency | Precaution | Default
MEX-file No impact | No impact No No impact "
arguments impact

Static memory No impact | Noimpact | No No impact Off
allocation impact

Parameter Command-Line Information Summary

The following table lists Real-Time Workshop® and Real-Time Workshop
Embedded Coder parameters that you can use to tune model and target
configurations. The table provides brief descriptions, valid values (bold type
highlights defaults), and a mapping to Configuration Parameter dialog box
equivalents. For descriptions of the panes and options in that dialog box, see
Configuration Parameters in the Real-Time Workshop documentation and
“Configuration Parameters” in the Real-Time Workshop Embedded Coder

documentation.

Use the get_param and set_param commands to retrieve and set the values
of the parameters on the MATLAB® command line or programmatically in
scripts. The Configuration Wizard in Real-Time Workshop Embedded Coder

also provides buttons and scripts for customizing code generation.

For information about Simulink® parameters, see “Configuration Parameters
Dialog Box” in the Simulink documentation. For information on using
get_param and set_param to tune the parameters for various model
configurations, see “Parameter Tuning by Using MATLAB Commands”. See
“Using Configuration Wizard Blocks” in the Real-Time Workshop Embedded
Coder documentation for information on using Configuration Wizard features.

6-203

6 Contfiguration Parameters

6-204

Note Parameters that are specific to the ERT target or targets based on
the ERT target, Stateflow®, or Fixed-Point Toolbox support are marked
with (ERT), (Stateflow), and (Fixed-Point), respectively. To set the values
of parameters marked with (ERT), you must specify an ERT or ERT-based
target for your configuration set. Also, note that the default setting for a
parameter might vary for different targets. Parameters marked with (ERT)
are listed with ERT target defaults.

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

Optimization pane

BufferReuse Optimization Reuse local (function) variables for
off, on > Reuse block block outputs wherever possible.
outputs Selecting this option trades code
traceability for code efficiency.
DataBitsets (Stateflow) Optimization Use bit sets for storing Boolean

off, on

> Use bit sets for
storing boolean data

data.

EfficientFloat2IntCast
off, on

Optimization

> Remove code from
floating-point to
integer conversions
that wrap
out-of-range values

Remove wrapping code that
handles out-of-range floating-point
to integer conversion results.

EnforceIntegerDowncast
off, on

Optimization
> Ignore integer
downcasts in folded

Remove casts of intermediate
variables to improve code
efficiency. When you select

expressions this option, expressions involving
8-bit and 16-bit arithmetic on
microprocessors of a larger bit size
are less likely to overflow in code
than in simulation.
ExpressionFolding Optimization Collapse block computations
off, on > Eliminate into single expressions wherever
superfluous possible. This improves code

temporary variables
(Expression folding)
> Interface

readability and efficiency.

6-205

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

InitF1tsAndDblsToZero (ERT)
off, on

Optimization

> Use memset to
initialize floats and
doubles to 0.0

Optimize initialization of storage
for float and double values. Set
this option if the representation
of floating-point zero used by
your compiler and target CPU is
identical to the integer bit pattern
0.

InlineInvariantSignals
off, on

Optimization
> Inline invariant
signals

Precompute and inline the values of
invariant signals in the generated
code.

InlinedParameterPlacement Optimization Specify how generated code stores
(ERT) > Parameter global (tunable) parameters.
Hierarchical, structure Specify NonHierarchical to trade
NonHierarchical off modularity for efficiency.
LifeSpan (ERT) Optimization Optimize the size of counters used
string > Application to compute absolute and elapsed
lifespan (days) time, using the specified application
life span value.
LocalBlockOutputs Optimization Declare block outputs in local
off, on > Enable local block | (function) scope wherever possible

outputs

to reduce global RAM usage.

NoFixptDivByZeroProtection
(Fixed-Point Toolbox)
off, on

Optimization

> Remove code that
protects against
division arithmetic
exceptions

Suppress generation of code that
guards against division by zero for
fixed-point data.

6-206

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

OptimizeModelRefInitCode Optimization Suppress generation of
(ERT) > Optimize initialization code to accommodate
off, on initialization code the case where this model is
for model reference referred to by a subsystem that
resets its states when enabled.
Select this option if the model will
never be referred to by such a
subsystem. Simulink reports an
error if this constraint is violated,
in which case you can disable this
optimization.
RollThreshold Optimization Specify the minimum signal width
int - 5 > Loop unrolling for which a for loop is to be
threshold generated.
StateBitsets (Stateflow) Optimization Use bit sets for storing state
off, on > Use bit sets configuration.
for storing state
configuration
UseTempVars (Stateflow) Optimization Minimize array reads in global

off, on

> Minimize array
reads using
temporary variables

memory by using temporary
variables.

ZeroExternalMemoryAtStartup
(ERT)
off, on

Optimization
> Remove root level
I/O zero initialization

Suppress code that initializes
root-level I/O data structures to
Zero.

ZeroInternalMemoryAtStartup
(ERT)
off, on

Optimization

> Remove
internal state zero
initialization

Suppress code that initializes global
data structures (for example, block
I/O data structures) to zero.

Diagnostics panes

6-207

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

ParameterTunabilitylLossMsg
none, warning, error

Diagnostics

> Data Validity
> Detect Loss of
Tunability

Specifies diagnostic action to

take when a parameter cannot be
tuned because it uses unsupported
functions or operators.

SignallLabelMismatchMsg
None, Warning, Error

Diagnostics

> Connectivity
> Signal label
mismatch

Specify the diagnostic action to
take when a signal label mismatch
occurs.

Hardware Implementation pane

ProdHWDeviceType
string - 32-bit Generic

Hardware
Implementation

> Emulation
hardware

> Device vendor
combined with Device

type

Specify a string of the form
vendor->type that selects a device
vendor and a device type among the
values listed in the Device vendor
and Device type drop-down
menus. For example, Analog
Devices->Blackfin.

TargetBitPerChar
int -8

Hardware
Implementation
> Emulation
hardware
> char

Specify the number of bits used to
represent the C/C++ type char.

TargetBitPerInt
int - 32

Hardware
Implementation
> Emulation
hardware
> int

Specify the number of bits used to
represent the C/C++ type int.

TargetBitPerLong
int - 32

Hardware
Implementation
> Emulation
hardware
> long

Specify the number of bits used to
represent the C/C++ type long.

6-208

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

TargetBitPerShort Hardware Specify the number of bits used to
int - 16 Implementation represent the C/C++ type short.
> Emulation
hardware
> short
TargetEndianess Hardware Specify whether the byte ordering
Unspecified, LittleEndian, Implementation of the target is Big Endian (most
BigEndian > Emulation significant byte first) or Little
hardware Endian (least significant byte

> Byte ordering

first). If left unspecified, Real-Time
Workshop generates executable
code to compute the result.

TargetIntDivRoundTo
Zero, Floor, Undefined

Hardware
Implementation

> Emulation
hardware

> Signed integer
division rounds to

Specify how your C/C++ compiler
rounds the result of dividing two
signed integers. This information
enables the code generator to
generate efficient C or C++ code
from the model.

TargetShiftRightIntArith
off, on

Hardware
Implementation

> Emulation
hardware

> Shift right on a
signed integer as
arithmetic shift

Specify that your C/C++ compiler
implements a right shift of a signed
integer as an arithmetic right shift.
Virtually all compilers do this.

TargetWordSize
int - 32

Hardware
Implementation

> Emulation
hardware

> native word size

Specify the number of bits that
the target processor can process at
one time. Providing the processor’s
native word size allows for more
efficient code to be generated when
converting the endian byte order of
data types.

Real-Time Workshop pane: General tab

6-209

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

GenCodeOnly
string - off, on

Real-Time Workshop
> General

> Generate code
only

Generate source code, but do not
execute the makefile to build an
executable.

GenerateMakefile
string - off, on

Real-Time Workshop
> General
> Generate makefile

Specify whether Real-Time
Workshop is to generate a makefile
during the build process for a
model.

GenerateReport
string - off, on

Real-Time Workshop
> General

> Generate HTML
report

Document the generated C or C++
code in an HTML report.

GenerateTraceInfo (ERT)
string - off, on

Real-Time Workshop
> General

> Block-to-code
highlighting

Includes block-to-code highlighting
support in the generated HTML
report.

IgnoreCustomStorageClasses
(ERT)
string - off, on

Real-Time Workshop
> General

> Ignore custom
storage classes

Treat custom storage classes as
"Auto’.

IncludeHyperlinkInReport
(ERT)
string - off, on

Real-Time Workshop
> General

> Code-to-block
highlighting

Link code segments to the
corresponding block in the
model. This option increases code
generation time for large models.

LaunchReport
string - off, on

Real-Time Workshop
> General

> Launch report
automatically

Display the HTML report after code
generation completes.

MakeCommand
string - make_rtw

Real-Time Workshop
> General
> Make command

Specify the make command and
optional arguments to be used
to generate an executable for the
model.

6-210

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

RTWCompilerOptimization

string - Off, On, Custom

Real-Time Workshop
> General

> Compiler
optimization level

Use this parameter to trade off
compilation time against run time
for your model code without having
to supply compiler-specific flags

to other levels of the Real-Time

Workshop build process.

O0ff - Turn compiler optimizations

off for faster builds

On - Turn compiler optimizations on

for faster code execution

Custom - Specify custom compiler
optimization flags via the
RTWCustomCompilerOptimizations

parameter

RTWCustomCompiler
Optimizations

string - "", unquoted string of
compiler optimization flags

Real-Time Workshop
> General

> Custom compiler
optimization flags

If you specified Custom to the
RTWCompilerOptimization
parameter, use this parameter
to specify custom compiler
optimization flags, for example,

-02.
Savelog Real-Time Workshop | Save build log.
off, on > General
> Save build log
SystemTargetFile Real-Time Workshop | Specify a system target file.

string - grt.tlc

> General
> System target file

TargetLang
string - C, C++

Real-Time Workshop
> General
> Language

Specify whether Real-Time
Workshop is to generate C or C++

code.

TemplateMakefile

string - grt_default_tmf

Real-Time Workshop
> General
> Template makefile

Specify the current template
makefile for building a Real-Time

Workshop target.

6-211

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

TLCOptions
string - ''

Real-Time Workshop
> General
> TLC options

Specify additional TLC command
line options.

Real-Time Workshop pane: Comments tab

CustomCommentsFcn (ERT)
string - ''

Real-Time Workshop
> Comments

> Custom comments
function

Specify the filename of the
M-function or TLC function that
adds the custom comment.

EnableCustomComments (ERT)

string - off, on

Real-Time Workshop
> Comments

> Custom comments
(MPT objects only)

Add a comment above a signal’s
or parameter’s identifier in the
generated file.

ForceParamTrailComments
string - off, on

Real-Time Workshop
> Comments

> Verbose comments
for SimulinkGlobal
storage class

Specify that comments be included
in the generated file. To reduce
file size, the model parameters
data structure is not commented
when there are more than 1000
parameters.

GenerateComments
string - off, on

Real-Time Workshop
> Comments
> Include comments

Include comments in generated
code.

InsertBlockDesc (ERT)
string - off, on

Real-Time Workshop
> Comments

> Simulink block
descriptions

Insert the contents of the
Description field from the
Block Parameters dialog box into
the generated code as a comment.

ReqsInCode (ERT)
string - off, on

Real-Time Workshop
> Comments

> Requirements

in block comments

Include specified requirements in
the generated code as a comment.

6-212

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

SFDataObjDesc (ERT)
string - off, on

Real-Time Workshop
> Comments

> Stateflow object
descriptions

Insert Stateflow object descriptions
into the generated code as a

comment.

ShowEliminatedStatements
string - off, on

Real-Time Workshop
> Comments

> Show eliminated
blocks

Show statements for eliminated
blocks as comments in the

generated code.

SimulinkBlockComments
string - off, on

Real-Time Workshop
> Comments

> Simulink block
comments

Insert Simulink block names as
comments above the generated code

for each block.

SimulinkDataObjDesc (ERT)
string - off, on

Real-Time Workshop
> Comments

> Simulink data
object descriptions

Insert Simulink data object
descriptions into the generated code

as comments.

Real-Time Workshop pane: Symbols tab

CustomSymbolStrBlkIO (ERT)
string - rtbh_NM

Real-Time Workshop
> Symbols

> Local block output
variables

Specify a symbol format

rule for local block output
variables. The rule can contain
valid C identifier characters
and the following macros:

$M - Mangle
$N - Name of object
$A - Data type acronym

6-213

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

CustomSymbolStrFcn (ERT)
string - $RENSMSF

Real-Time Workshop
> Symbols

> Subsystem
methods

Specify a symbol format rule for
subsystem methods. The rule can
contain valid C identifier characters
and the following macros:

$M - Mangle

$R - Root model name

$N - Name of object

$H - System hierarchy number

$F - Subsystem method name

CustomSymbolStrField (ERT)
string - NM

Real-Time Workshop
> Symbols

> Field name of
global types

Specify a symbol format

rule for field name of global
types. The rule can contain
valid C identifier characters
and the following macros:

$M - Mangle

$N - Name of object

$H - System hierarchy number
$A - Data type acronym

CustomSymbolStrGlobalvar
(ERT)
string - SRNSM

Real-Time Workshop
> Symbols
> Global variables

Specify a symbol format rule for
global variables. The rule can
contain valid C identifier characters
and the following macros:

$M - Mangle

$R - Root model name

$N - Name of object

CustomSymbolStrMacro (ERT)
string - SRNSM

Real-Time Workshop
> Symbols
> Constant macros

Specify a symbol format rule for
constant macros. The rule can
contain valid C identifier characters
and the following macros:

$M - Mangle

$R - Root model name

$N - Name of object

6-214

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

CustomSymbolStrTmpVar (ERT)
string - NM

Real-Time Workshop
> Symbols

> Local temporary
variables

Specify a symbol format
rule for local temporary

variables. The rule can contain
valid C identifier characters

and the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

CustomSymbolStrType (ERT)
string - NSRM

Real-Time Workshop
> Symbols
> Global types

Specify a symbol format rule for
global types. The rule can contain
valid C identifier characters

and the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

DefineNamingFcn
string -''

Real-Time Workshop
> Symbols

> #define naming

> Custom M-function

Specify a custom M-function to
control the naming of symbols
with #define statements. You
can set this parameter only if
DefineNamingRule is set to

Custom.

DefineNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Real-Time Workshop
> Symbols
> #define naming

Specify the rule that changes the
spelling of all #define names.

IncDataTypelInIds
off, on

Real-Time Workshop
> Symbol

> Include data

type acronym in
identifiers

Include acronyms that express
data types in signal and work
vector identifiers. For example,
'rtB.132_signame' identifies a
32-bit integer block output signal

named 'signame’.

6-215

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

IncHierarchyInIds
off, on

Real-Time Workshop
> Symbols

> Include system
hierarchy number in
identifiers

Include the system hierarchy
number in variable identifiers.
For example, 's3_"' is the
system hierarchy number in
rtB.s3_signame for a block
output signal named 'signame’.
Including the system hierarchy
number in identifiers improves
the traceability of generated
code. To locate the subsystem in
which the identifier resides, type
hilite system('<S83>') at the
MATLAB prompt. The argument
specified with hilite system
requires an uppercase S.

InlinedPrmAccess (ERT)
string - Literals, Macros

Real-Time Workshop
> Symbols

> Generate scalar
inlined parameters
as

Specify whether inlined parameters
are coded as numeric constants or
macros. Specify Macros for more
efficient code.

ManglelLength Real-Time Workshop | Specify the minimum number of
int - 1 > Symbols characters to be used for name
> Minimum mangle | mangling strings generated and
length applied to symbols to avoid name
collisions. A larger value reduces
the chance of identifier disturbance
when you modify the model.
MaxIdLength Real-Time Workshop | Specify the maximum number of
int - 31 > Symbols characters that can be used in
> Maximum generated function, type definition,
identifier length and variable names.

ParamNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Real-Time Workshop
> Symbols
> Parameter naming

Select a rule that changes spelling
of all parameter names.

6-216

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

PrefixModelToSubsysFcnNames
off, on

Real-Time Workshop
> Symbols

> Prefix model name
to global identifiers

Add the model name as a prefix to
subsystem function names for all
code formats. When appropriate
for the code format, also add the
model name as a prefix to top-level
functions and data structures.
This prevents compiler errors due
to name clashes when combining
multiple models.

SignalNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Real-Time Workshop
> Symbols
> Signal naming

Specify a rule the code generator is
to use that changes spelling of all
signal names.

Real-Time Workshop pane: Custom Code tab

CustomHeaderCode Real-Time Workshop | Specify the code to appear at the top
string - "' > Custom Code of the generated model.h header

> Header file file.
CustomInclude Real-Time Workshop | Specify a space-separated list of
string - '' > Custom Code include directories to be added to

> Include directories | the include path when compiling

the generated code.

CustomInitializer Real-Time Workshop | Specify the code to appear in the
string - '' > Custom Code generated model initialize function.
CustomLibrary Real-Time Workshop | Specify a space-separated list of
string - "' > Custom Code static library files to be linked with

> Initialize function | the generated code.

Libraries
CustomSource Real-Time Workshop | Specify a space-separated list of
string - "' > Custom Code source files to be compiled and

> Source files linked with the generated code.
CustomSourceCode Real-Time Workshop | Specify code to appear at the top of
string - "' > Custom Code the generated model . c source file.

> Source file

6-217

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

CustomTerminator
string - ''

Real-Time Workshop
> Custom Code

> Terminate
function

Specify code to appear in the
model’s generated terminate
function.

Real-Time Workshop pane: Debug tab

ProfileTLC
string - off, on

Real-Time Workshop
> Debug
> Profile TLC

Profile the execution time of each
TLC file used to generate code for
this model in HTML format.

RTWVerbose Real-Time Workshop | Display messages indicating code

string - off, on > Debug generation stages and compiler
> Verbose build output.

RetainRTWFile Real-Time Workshop | Retain the model.rtw file in the

string - off, on > Debug current build directory.

> Retain .rtw file

TLCAssert Real-Time Workshop | Produce a TLC stack trace when the
string - off, on > Debug argument to the assert directives
> Enable TLC evaluates to false.
assertion
TLCCoverage Real-Time Workshop | Generate .log files containing
string - off, on > Debug the number of times each line of

> Start TLC coverage
when generating
code

TLC code is executed during code
generation.

TLCDebug
string - off, on

Real-Time Workshop
> Debug

> Start TLC
debugger when
generating code

Start the TLC debugger during
code generation at the beginning of
the TLC program. TLC breakpoint
statements automatically invoke
the TLC debugger regardless of this
setting.

Real-Time Workshop pane: Interface tab

6-218

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

CombineOutputUpdateFcns
(ERT)

Real-Time Workshop
> Interface

Generate a model’s output and
update routines into a single-step

string - off, on > Single function.
output/update
function
ExtMode Real-Time Workshop | Specify the data interface to be
off, on > Interface generated with the code.
> Interface
ExtModeMexArgs Real-Time Workshop | Specify arguments that are passed
string ("") > Interface to an external mode interface
> Interface MEX-file for communicating with
> External executing targets.
> MEX-file
arguments
ExtModeStaticAlloc Real-Time Workshop | Use a static memory buffer for
off, on > Interface external mode instead of allocating

> Static memory
allocation

dynamic memory (calls to malloc).

ExtModeStaticAllocSize
integer (1000000)

Real-Time Workshop
> Interface

> Static memory
buffer size

Specify the size in bytes of the
external mode static memory
buffer.

ExtModeTransport
int - 0 for TCP/IP, 1 for
32-bit Windows serial

Real-Time Workshop
> Interface

> Interface

> External

> Transport layer

Specify transport protocols for
external mode communications.

GenerateASAP2
off, on

Real-Time Workshop
> Interface
> Interface

Specify the data interface to be
generated with the code.

6-219

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

GenerateErtSFunction (ERT)
string - off, on

Real-Time Workshop
> Interface

> Create Simulink
(S-Function) block

Wrap the generated code inside an
S-Function block. This allows you
to validate the generated code in
Simulink.

GenFloatMathFcnCalls
string - ANSI_C, C99
(IS0), GNU99 (GNU)

(For ERT-based models,
additional target-specific
values may be available;

see the Target function
library drop-down list in the
Configuration Parameters
dialog box.)

Real-Time Workshop
> Interface

> Target function
library

Specify a target-specific math
library for your model. Verify
that your compiler supports the
library you want to use; otherwise
compile-time errors can occur.

ANSI C - ISO/IEC 9899:1990

C standard math library for
floating-point functions

C99 (IS0) - ISO/IEC 9899:1999 C
standard math library

GNU99 (GNU) - GNU gcc math
library, which provides C99
extensions as defined by compiler
option -std=gnu99

GRTInterface (ERT)
string - off, on

Real-Time Workshop
> Interface

> GRT compatible
call interface

Include a code interface (wrapper)
that is compatible with the GRT
target.

IncludeMdlTerminateFcn
(ERT)
string - off, on

Real-Time Workshop
> Interface

> Terminate
function required

Generate a terminate function for
the model.

LogVarNameModifier
string - none, rt_, rt

Real-Time Workshop
> Interface

> MAT-file variable
name modifier

Augment the MAT-file variable
name.

MatFileLogging (ERT)
string - off, on

Real-Time Workshop
> Interface
> MAT-file logging

Generate code that logs data to a
MATLAB .mat file.

6-220

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

MultiInstanceErrorCode
(ERT)
string - None, Warning,
Error

Real-Time Workshop
> Interface

> Reusable code
error diagnostic

Specify the error diagnostic
behavior for cases when data
defined in the model violates the
requirements for generation of
reusable code.

MultiInstanceERTCode (ERT)
string - off, on

Real-Time Workshop
> Interface

> Reusable code
error diagnostic

Specify the error diagnostic
behavior for cases when data
defined in the model violates the
requirements for generation of
reusable code.

PortableWordSizes (ERT)
string - off, on

Real-Time Workshop
> Interface

> Enable portable
word sizes

Specify that model code should
be generated with conditional
processing macros that allow
the same generated source

code files to be used both for
software-in-the-loop (SIL) testing
on the host platform and for
production deployment on the
target platform.

PurelyIntegerCode (ERT)
string - off, on

Real-Time Workshop
> Interface

> floating-point
numbers

Support floating-point data
types in the generated code.
This option is forced on when
SupportNonInlinedSFcns is on.

RTWCAPIParams
string - off, on

Real-Time Workshop
> Interface

> Parameters in C
API

Generate parameter tuning
structures in C APL.

RTWCAPISignals
string - off, on

Real-Time Workshop
> Interface
> Signals in C API

Generate signal structure in C API.

6-221

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

RootIOFormat (ERT)
string - Individual arguments,
Structure reference

Real-Time Workshop
> Interface

> Pass root-level
I/O as

Specify how the code generator is
to pass root-level I/O data into a
reusable function.

SupportAbsoluteTime (ERT)
string - off, on

Real-Time Workshop
> Interface
> absolute time

Support absolute time in the
generated code. Blocks such as the
Discrete Integrator might require
absolute time.

SupportComplex (ERT)
string - off, on

Real-Time Workshop
> Interface
> complex numbers

Support complex data types in the
generated code.

SupportContinuousTime
(ERT)
string - off, on

Real-Time Workshop
> Interface
> continuous time

Support continuous time in the
generated code. This allows blocks
to be configured with a continuous
sample time. Not available if
SuppressErrorStatus is on.

SupportNonFinite (ERT)
string - off, on

Real-Time Workshop
> Interface
> nonfinite numbers

Support nonfinite values (inf,
nan, -inf) in the generated code.
This option is forced on when
SupportNonInlinedSFcns is on.

SupportNonInlinedSFcns
string - off, on

Real-Time Workshop
> Interface

> noninlined
S-functions

Support S-functions that have
not been inlined with a TLC file.
Inlined S-functions generate the
most efficient code.

SuppressErrorStatus (ERT)
string - off, on

Real-Time Workshop
> Interface

> Suppress error
status in real-time
model data structure

Remove the error status field of
the real-time model data structure
to preserve memory. When on,
SupportContinuousTime is off.

UtilityFuncGeneration
string - Auto, Shared location

Real-Time Workshop
> Interface

> Utility function
generation

Specify where utility functions are
to be generated.

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

Real-Time Workshop pane: Code Style tab

ParenthesesLevel (ERT)
string - Minimum, Nominal,
Maximum

Real-Time Workshop
> Code Style
> Parentheses Level

Control existence of optional
parentheses in generated code.

PreserveExpressionOrder
(ERT)
string - off, on

Real-Time Workshop
> Code Style

> Preserve operand
order in expression

Control reordering of commutable
expressions.

PreserveIfCondition (ERT)
string - off, on

Real-Time Workshop
> Code Style

> Preserve condition
expression in if
statement

Control preservation of if
statement conditions.

Real-Time Workshop pane: Templates tab

ERTCustomFileTemplate
(ERT)

string -
example_file_process.tlc

Real-Time Workshop
> Templates

> File customization
template

Specify a TLC callback script for
customizing the generated code.

ERTDataHdrFileTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop
> Templates

> Header file (*.h)
template

Specify a template that organizes

the generated data .h header files.

ERTDataSrcFileTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop
> Templates

> Source file (*.c

or *.cpp) template

Specify a template that organizes
the generated data .c source files.

ERTHdrFileBannerTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop
> Templates

> Header file (*.h)
template

Specify a template that organizes

the generated code .h header files.

6-223

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

ERTSrcFileBannerTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop
> Templates

> Source file (*.c

or *.cpp) template

Specify a template that organizes
the generated code .c or .cpp
source files.

GenerateSampleERTMain (ERT)
string - off, on

Real-Time Workshop
> Templates

> Generate an
example main
program

Generate an example main program
that demonstrates how to deploy
the generated code. The program
is written to the file ert_main.c or
ert_main.cpp.

Target0S (ERT)
string - BareBoardExample,
VxWorksExample

Real-Time Workshop
> Templates

> Target operating
system

Specify the target operating
system for the example main
ert_main.c or ert_main.cpp.
BareBoardExample is a generic
example that assumes no operating
system. VxWorksExample is tailored
to the VxWorks real-time operating
system.

Real-Time Workshop pane: Data Placement tab

DataDefinitionFile (ERT)
string - global.c

Real-Time Workshop
> Data Placement

> Data definition
filename

Specify the name of a single
separate .c or .cpp file that
contains global data definitions.

DataReferenceFile (ERT)
string - global.h

Real-Time Workshop
> Data Placement

> Data declaration
filename

Specify the name of a single
separate .c or .cpp file that
contains global data references.

GlobalDataDefinition(ERT)
string - Auto, InSourceFile,
InSeparateSourceFile

Real-Time Workshop
> Data Placement
> Data definition

Select the .c or .cpp file where
variables of global scope are
defined.

GlobalDataReference (ERT)
string - Auto, InSourceFile,
InSeparateHeaderFile

Real-Time Workshop
> Data Placement
> Data declaration

Select the .h file where variables
of global scope are declared

(for example, extern real T
globalvar;).

6-224

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

IncludeFileDelimiter (ERT)
string - Auto, UseQuote,
UseBracket

Real-Time Workshop
> Data Placement

> #include file
delimiter

Specify the delimiter to be used
for all data objects that do not
have a delimiter specified in the
IncludeFile property.

ModuleName (ERT)
string - ''

Real-Time Workshop
> Data Placement
> Module name

Specify the name of the module
that owns this model.

ModuleNamingRule (ERT)
string - Unspecified,
SameAsModel, UserSpecified

Real-Time Workshop
> Data Placement
> Module naming

Specify the rule to be used for
naming the module.

ParamTuneLevel (ERT)
int - 10

Real-Time Workshop
> Data Placement

> Parameter tune
level

Specify whether the code generator
is to declare a parameter data
object as tunable global data in the
generated code.

SignalDisplayLevel (ERT)
int - 10

Real-Time Workshop
> Data Placement

> Signal display
level

Specify whether the code generator
is to declare a signal data object as
global data in the generated code.

Real-Time Workshop pane: Data Type Replacement t

ab

EnableUserReplacementTypes

Real-Time Workshop

Specify whether to replace built-in

(ERT) > Data Type data type names with user-defined

string - off, on Replacement data type names in generated code.

ReplacementTypes (ERT) Real-Time Workshop | Specify names to use for built-in

string - '' > Data Type data types in generated code.
Replacement

> Data type names

Real-Time Workshop pane: Memory Sections tab

MemSecPackage (ERT)
string - --- None ---,
Simulink, mpt

Real-Time Workshop
> Memory Sections
> Package

Specify the package that contains
the memory sections that you want

to apply.

6-225

6 Contfiguration Parameters

Configuration

Parameters Dialog
Parameter and Values Box Equivalent Description
MemSecFuncInitTerm (ERT) Real-Time Workshop | Apply memory sections to:
string - Default, > Memory Sections
MemConst, MemVolatile, > Initialize/Terminate| ® Initialize/Start functions
MemConstVolatile . .

¢ Terminate functions

MemSecFuncExecute (ERT) Real-Time Workshop | Apply memory sections to:
string - Default, > Memory Sections
MemConst, MemVolatile, > Execution e Step functions
MemConstVolatile

¢ Run-time initialization functions

¢ Derivative functions

Enable functions

Disable functions

MemSecDataConstants (ERT) Real-Time Workshop | Apply memory sections to:

string - Default, > Memory Sections
MemConst, MemVolatile, > Constants ¢ Constant parameters
MemConstVolatile e Constant block /O

e Zero representation
MemSecDataIO (ERT) Real-Time Workshop | Apply memory sections to:
string - Default, > Memory Sections
MemConst, MemVolatile, > Inputs/Outputs ¢ Root inputs
MemConstVolatile S Rt el
MemSecDatalInternal (ERT) Real-Time Workshop | Apply memory sections to:
string - Default, > Memory Sections
MemConst, MemVolatile, > Internal data ¢ Block I/O
MemConstVolatile

D-work vectors

Run-time model

® Zero-crossings

6-226

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

MemSecDataParameters (ERT)
string - Default,
MemConst, MemVolatile,

Real-Time Workshop
> Memory Sections
> Parameters

Apply memory sections to:

e Parameters

MemConstVolatile

Not in GUI

CodeGenDirectory Not available For MathWorks use only.
Comment Not available For MathWorks use only.

CompOptLevelCompliant
off, on

Not available

Set in SelectCallback for a target
to indicate whether the target
supports the ability to use the
Compiler optimization level
parameter on the Interface pane
to control the compiler optimization
level for building generated

code. Default is off for custom
targets and on for targets provided
by Real-Time Workshop and
Real-Time Workshop Embedded
Coder.

ConfigAtBuild Not available For MathWorks use only.
ConfigurationMode Not available For MathWorks use only.
ConfigurationScript Not available For MathWorks use only.
ERTCustomFileBanners Not available For MathWorks use only.

ERTFirstTimeCompliant (ERT)
string - off, on

Not available

Set in SelectCallback for a
target to indicate whether the
target supports the ability to
control inclusion of the firstTime
argument in the model_initialize
function generated for a Simulink
model. Default is off for custom
and non-ERT targets and on for
ERT targets.

6-227

6 Contfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

EvaledLifeSpan Not available For MathWorks use only.
ExtModeMexFile Not available For MathWorks use only.
ExtModeTesting Not available For MathWorks use only.
FoldNonRolledExpr Not available For MathWorks use only.
GenerateFullHeader Not available For MathWorks use only.
IncAutoGenComments Not available For MathWorks use only.

IncludeERTFirstTime (ERT)
string - off, on

Not available

Specify whether Real-Time
Workshop Embedded Coder is to
include the firstTime argument
in the model_initialize function
generated for a Simulink model.

IncludeRegionsInRTWFile
BlockHierarchyMap

Not available

For MathWorks use only.

IncludeRootSignalInRTWFile

Not available

For MathWorks use only.

IncludeVirtualBlocksInRTW
FileBlockHierarchyMap

Not available

For MathWorks use only.

IsERTTarget

Not available

For MathWorks use only.

IsPILTarget

Not available

For MathWorks use only.

ModelReferenceCompliant
string - off, on

Not available

Set in SelectCallback for a target
to indicate whether the target
supports model reference.

ModelStepFunctionPrototype
ControlCompliant (ERT)
string - off, on

Not available

Set in SelectCallback for a target
to indicate whether the target
supports the ability to control

the function prototypes of step
functions that are generated for a
Simulink model. Default is off for
non-ERT targets and on for ERT
targets.

6-228

Parameter Reference

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

ParamNamingFcn Not available For MathWorks use only.

PostCodeGenCommand Not available Add the specified post code

string - "' generation command to the model’s
build process.

PreserveName Not available For MathWorks use only.

PreserveNameWithParent

Not available

For MathWorks use only.

ProcessScript Not available For MathWorks use only.
ProcessScriptMode Not available For MathWorks use only.
RTWCAPIStates Not available For MathWorks use only.
SignalNamingFcn Not available For MathWorks use only.
SystemCodeInlineAuto Not available For MathWorks use only.
TargetFcnLib Not available For MathWorks use only.
TargetLibSuffix Not available Control the suffix used for naming
string - "' a target’s dependent libraries

(for example, target.lib or
_target.a). If specified, the
string must include a period (.).
(For generated model reference
libraries, the library suffix defaults
to _rtwlib.lib on Windows
systems and _rtwlib.a on UNIX
systems.)

TargetPreCompLibLocation
string - ''

Not available

Control the location of precompiled
libraries. If you do not set this
parameter, Real-Time Workshop
uses the location specified in
rtwmakecfg.m.

TargetPreprocMaxBitsSint
int - 32

Not available

Specify the maximum number of
bits that the target C preprocessor
can use for signed integer math.

6-229

6 c

onfiguration Parameters

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent

Description

TargetPreprocMaxBitsUint
int - 32

Not available

Specify the maximum number of
bits that the target C preprocessor
can use for unsigned integer math.

TargetTypeEmulationWarn
SuppressLevel
SuppressLevel

int - 0

Not available

When greater than or equal to 2,
suppress warning messages that
Real-Time Workshop displays when
emulating integer sizes in rapid
prototyping environments.

6-230

7

Embedded MATLAB Coder
Configuration Parameters

Real-Time Workshop Dialog Box for Parameters for embeddable C
Embedded MATLAB Coder (p. 7-2) code generation using Embedded
MATLAB™ Coder

Automatic C MEX Generation Dialog Parameters for C MEX generation
Box for Embedded MATLAB Coder using Embedded MATLAB Coder
(p. 7-14)

Hardware Implementation Dialog Parameters for C MEX generation
Box for Embedded MATLAB Coder using Embedded MATLAB Coder
(p. 7-21)

7 Embedded MATLAB Coder Configuration Parameters

7-2

Real-Time Workshop Dialog Box for Embedded MATLAB
Coder

In this section...

“Real-Time Workshop Dialog Box Overview” on page 7-2
“General Tab” on page 7-3

“Symbols Tab” on page 7-4

“Custom Code Tab” on page 7-6

“Debug Tab” on page 7-9

“Interface Tab” on page 7-11

“Generate code only” on page 7-13

Real-Time Workshop Dialog Box Overview

Specifies parameters for embeddable C code generation using Embedded
MATLAB Coder.

Displaying the Dialog Box
To display the Real-Time Workshop dialog box for Embedded MATLAB Coder,
follow these steps at the MATLAB command prompt:

1 Define a configuration object variable for embeddable C code generation in
the MATLAB workspace by issuing a constructor command like this:

codegen_cfg=emlcoder.RTWConfig;
2 Open the property dialog box using one of these methods:

® Double-click the configuration object variable in the MATLAB workspace

® Issue the open command from the MATLAB prompt, passing it the
configuration object variable, as in this example:

open codegen_cfg;

The dialog box displays on your desktop.

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

See Also
“Configuring Your Environment for Code Generation”

General Tab

Specifies general parameters for embeddable C code generation using
Embedded MATLAB Coder.

[Zreal-Time Workshop x|

General | Syrnbiols I Cuztorn Code I Debug I Interfacel

— Dacumentation

[T Generate HTML report

™| Launch report autamatically

— Build proce

b akefile configuration

¥ Generate makefils

b ake command: Imake_rtw

Template makefile: Igrt_default_tmf

[T Generate code only

(] 4 Cancel Help Apply

7 Embedded MATLAB Coder Configuration Parameters

Parameters

The following table describes the general parameters for the Embedded
MATLAB Coder Real-Time Workshop dialog box:

General Parameter | Equivalent Description
Command-Line
Property and Values
(default in bold)

“Generate HTML GenerateReport Document generated

report” on page 6-9 true, false code in an HTML
report.

“Launch report LaunchReport Specify whether to

automatically” on page | true, false automatically display

6-11 HTML reports after
code generation
completes.

Note Requires that
you select Generate
HTML report

“Generate makefile” on | GenerateMakefile Specify whether to

page 6-23 true, false generate a makefile
during the build
process.

“Make command” on MakeCommand Specify a make

page 6-25 string, 'make_rtw' command (if Generate
makefile is enabled)

“Template makefile” on | MakeCommand Specify a template

page 6-27 string, makefile (if Generate

'grt_default_tmf' makefile is enabled)

Symbols Tab

Specifies parameters for selecting automatically generated naming rules for
identifiers in code generation using Embedded MATLAB Coder.

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

[Treal-Time Workshop x|

General — Symbols I Custorn Code I Debug I Interfacel

Auta-generated identifier naming e
|V b axirnum identifier length: |3'I

[T Generate code only

(] 4 Cancel Help Apply

Parameters

The following table describes the symbols parameters for the Embedded
MATLAB Coder Real-Time Workshop dialog box:

7 Embedded MATLAB Coder Configuration Parameters

Symbols Parameter | Equivalent Description
Command-Line
Property and Values
(default in bold)

“Maximum identifier MaxIdLength Specify maximum
length” on page 6-73 integer, 31 number of characters
in generated function,
type definition, and
variable names.
Minimum is 31.

Custom Code Tab

Creates a list of custom C code, directories, source and header files, and
libraries to be included in files generated by Embedded MATLAB Coder.

7-6

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

[Treal-Time Workshop x|

General I Swmbols Custom Code | Debug I Interfacel

— Include custom C code in generated:

Source file Source file:
Header file

[mitialize function
T erminate functian

— Inchude list of additional;

Include directonies |nclude directanies:
Source files
Libraries

[T Generate code only

(] 4 Cancel Help Apply

Configuration

1 Select the type of information to include from the list on the left side of
the pane.

2 Enter a string to identify the specific code, directory, source file, or library.

3 Click Apply.

7 Embedded MATLAB Coder Configuration Parameters

Parameters

The following table describes the custom code parameters for the Embedded
MATLAB Coder Real-Time Workshop dialog box:

Custom Code
Parameter

Equivalent
Command-Line
Property and Values
(default in bold)

Description

“Source file” on page CustomSourceCode Specify code appearing

6-87 string, "' near the top of the
generated .c or .cpp
file, outside of any
function.

“Header file” on page CustomHeaderCode Specify code appearing

6-88 string, "' near the top of the
generated .h file.

“Initialize function” on | CustomInitializer Specify code appearing

page 6-89 string, "' in the initialize function
of the generated .c or
.cpp file.

“Terminate function” on | CustomTerminator Specify code appearing

page 6-90 string, "' in the terminate
function of the
generated .c or .cpp
file.

“Include directories” on | CustomInclude Specify a

page 6-91 string, "' space-separated list

of include directories to
be added to the include
path when compiling
the generated code.

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

Custom Code Equivalent Description
Parameter Command-Line
Property and Values
(default in bold)
“Source files” on page CustomSource Specify a
6-92 string, "' space-separated list
of source files to be
compiled and linked
with the generated
code.
“Libraries” on page 6-93 | CustomLibrary Specify a list of
string, "' additional libraries

to link with.

Debug Tab

Specifies parameters for debugging the Embedded MATLAB Coder build

process.

7-9

7 Embedded MATLAB Coder Configuration Parameters

Real-Time Workshop

Parameters

The following table describes the debug parameters for the Embedded
MATLAB Coder Real-Time Workshop dialog box:

7-10

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

“Verbose build” on page | RTWVerbose Display code generation
6-97 true, false progress.

Interface Tab

Specifies parameters for selecting the target software environment for the
code generated by Embedded MATLAB Coder.

7-11

7 Embedded MATLAB Coder Configuration Parameters

C29/C90 [AMSI)

Parameters

The following table describes the interface parameters for the Embedded
MATLAB Coder Real-Time Workshop dialog box:

7-12

Real-Time Workshop Dialog Box for Embedded MATLAB Coder

Interface Parameter

Equivalent
Command-Line
Property and Values
(default in bold)

Description

“Target function
library” on page 6-106

GenFloatMathFcnCalls
string, 'ANSI_C'

Specify floating-point
math library extension.

Generate code only
Specify code generation versus an executable build. See “Generate code only”

on page 6-31.

7-13

7 Embedded MATLAB Coder Configuration Parameters

7-14

Automatic C MEX Generation Dialog Box for Embedded
MATLAB Coder

In this section...

“Automatic C MEX Generation Dialog Box Overview” on page 7-14
“General Tab” on page 7-15

“Custom Code Tab” on page 7-17

Automatic C MEX Generation Dialog Box Overview
Specifies parameters for C MEX generation using Embedded MATLAB Coder.

Displaying the Dialog Box
To display the Automatic C MEX Generation dialog box for Embedded
MATLAB Coder, follow these steps at the MATLAB command prompt:

1 Define a configuration object variable for C MEX generation in the
MATLAB workspace by issuing a constructor command like this:

mexgen_cfg=emlcoder.MEXConfig;
2 Open the property dialog box using one of these methods:

® Double-click the configuration object variable in the MATLAB workspace

® Issue the open command from the MATLAB prompt, passing it the
configuration object variable, as in this example:

open mexgen_cfg;

The dialog box displays on your desktop.

See Also

“Configuring Your Environment for Code Generation”

Automatic C MEX Generation Dialog Box for Embedded MATLAB Coder

General Tab

Specifies general parameters for C MEX generation using Embedded
MATLAB Coder.

E! Automatic C-MEX Generation il

General | Custam Eu:u:IEI

— Diocumentation

[Generate HTML report

[T Launch report automatically

— Build proce

[~ Enable debug build

k. Cancel Help Spply

Parameters

The following table describes the general parameters for the Embedded
MATLAB Coder Automatic C MEX Generation dialog box:

7-15

7 Embedded MATLAB Coder Configuration Parameters

General Parameter

Equivalent
Command-Line
Property and Values
(default in bold)

Description

“Generate HTML GenerateReport Document generated
report” on page 6-9 true, false code in an HTML
report.
“Launch report LaunchReport Specify whether to
automatically” on page | true, false automatically display
6-11 HTML reports after
code generation
completes.
Note Requires that
you select Generate
HTML report
“Enable debug build” EnableDebugging Compile the generated
on page 7-16 true, false code in debug mode.

Enable debug build

For C MEX code generation, specify whether Embedded MATLAB Coder
compiles the generated code in debug mode.

Settings. Default: off

I7On

Compile generated code in debug mode.

I off

Compile generated code in release (or optimized) mode.

Command-Line Information.

Parameter: EnableDebugging

Type: string

Automatic C MEX Generation Dialog Box for Embedded MATLAB Coder

Value: 'on' | 'off'
Default: 'off'

Recommended Settings.

Application Setting
Debugging On
Traceability On
Efficiency Off

Safety precaution No impact

See Also. “How Debugging Affects Simulation Speed” in the Simulink User’s
Guide documentation.

Custom Code Tab

Creates a list of custom C code, directories, source and header files, and
libraries to be included in files generated by Embedded MATLAB Coder.

7-17

7 Embedded MATLAB Coder Configuration Parameters

E! Automatic C-MEX Generation il

General Cuztom Code I

— Include custom C code in generated:

Source file Source file:
Header file

[mitialize function
T erminate functian

— Inchude list of additional;

Include directonies |nclude directonies:
Source files
Libraries

(] 4 Cancel Help Apply

Configuration

1 Select the type of information to include from the list on the left side of
the pane.

2 Enter a string to identify the specific code, directory, source file, or library.

3 Click Apply.

7-18

Automatic C MEX Generation Dialog Box for Embedded MATLAB Coder

Parameters

The following table describes the custom code parameters for the Embedded
MATLAB Coder Automatic C MEX Generation dialog box:

Custom Code
Parameter

Equivalent
Command-Line
Property and Values
(default in bold)

Description

“Source file” on page CustomSourceCode Specify code appearing

6-87 string, "' near the top of the
generated C MEX file.

“Header file” on page CustomHeaderCode Specify code appearing

6-88 string, "' near the top of the
generated header .h
file.

“Initialize function” on | CustomInitializer Specify code appearing

page 6-89 string, "' in the initialize function
of the generated C MEX
file.

“Terminate function” on | CustomTerminator Specify code appearing

page 6-90 string, "' in the terminate
function of the
generated .c or .cpp
file.

“Include directories” on | CustomInclude Specify a

page 6-91 string, "' space-separated list

of include directories to
be added to the include
path when compiling
the generated code.

7-19

7 Embedded MATLAB Coder Configuration Parameters

7-20

Custom Code Equivalent Description
Parameter Command-Line
Property and Values
(default in bold)
“Source files” on page CustomSource Specify a
6-92 string, "' space-separated list
of source files to be
compiled and linked
with the generated
code.
“Libraries” on page 6-93 | CustomLibrary Specify a list of
string, "' additional libraries

to link with.

Hardware Implementation Dialog Box for Embedded MATLAB Coder

Hardware Implementation Dialog Box for Embedded
MATLAB Coder

In this section...

“Hardware Implementation Parameters Dialog Box Overview” on page 7-21

“Hardware Implementation Parameters” on page 7-22

Hardware Implementation Parameters Dialog Box
Overview
Specifies parameters of the target hardware implementation.

E! Hardware Implementation x|

— Embedded hardware

Device vendar:

Device tpe: IM.ﬂ'-.T LAE Host Compriker ;I

Mumber of bits: char; IE ghort: |1E ink; |32
[org: |32 native word size:; |32

Byte ardering: ILittIeE ndiar ;I
Signed integer division raunds ko IZern:- ;I

¥ | Shitt right on & sighed integer as arithmetic zhift

] Cancel Help Apply

Displaying the Dialog Box
To display the Hardware Implementation dialog box dialog box for Embedded
MATLAB Coder, follow these steps at the MATLAB command prompt:

7-21

7 Embedded MATLAB Coder Configuration Parameters

1 Define a configuration object variable for hardware implementation in the
MATLAB workspace by issuing a constructor command like this:

hwi_cfg=emlcoder.HardwareImplementation;
2 Open the property dialog box using one of these methods:

® Double-click the configuration object variable in the MATLAB workspace

® Issue the open command from the MATLAB prompt, passing it the
configuration object variable, as in this example:

open hwi_cfg;

The dialog box displays on your desktop.

See Also

“Configuring Your Environment for Code Generation”

Hardware Implementation Parameters

The following table describes the hardware implementation parameters for
Embedded MATLAB Coder:

Parameter Equivalent Command-Line
Property and Values

(default in bold)

ProdHWDeviceType
string, 'Generic->MATLAB

Description

“Device vendor” Specify manufacturer of

hardware you will use to

7-22

Host Computer'

implement the production
version of the system.

“Device type”

ProdHWDeviceType
string, 'Generic->MATLAB
Host Computer'

Specify type of hardware
you will use to implement
the production version of the
system.

“Number of bits: char”

ProdBitPerChar
integer, 8

Specify length in bits of the C
char data type supported by
the target hardware.

Hardware Implementation Dialog Box for Embedded MATLAB Coder

Parameter Equivalent Command-Line | Description
Property and Values
(default in bold)
“Number of bits: short” ProdBitPerShort Specify length in bits of the C
integer, 16 short data type supported by
the target hardware.
“Number of bits: int” ProdBitPerInt Specify length in bits of the C
integer, 32 int data type supported by the
target hardware.
“Number of bits: long” ProdBitPerLong Specify length in bits of the C
integer, 32 long data type supported by
the target hardware.
“Number of bits: native word | WordSize Specify microprocessor native
size” integer, 32 word size for the target
hardware.
“Byte ordering” ProdEndianess Specify significance of the first
'Unspecified’, byte of a data word for the
'LittleEndian’, target hardware.
'BigEndian’
“Signed integer division ProdIntDivRoundTo Specify how your compiler
rounds to:” 'Undefined', 'Zero', rounds the result of dividing
'"Floor' one signed integer by another

to produce a signed integer
quotient.

“Shift right on a signed integer
as arithmetic shift”

ProdShiftRightIntArith
true, false

Specify whether your compiler
implements a signed integer
right shift as an arithmetic
right shift.

7-23

7 Embedded MATLAB Coder Configuration Parameters

7-24

Model Advisor Checks

Real-Time Workshop Checks (p. 8-2) Describes Model Advisor checks for
Real-Time Workshop

8 Model Advisor Checks

Real-Time Workshop Checks

In this section...

“Real-Time Workshop Overview” on page 8-3

“Check solver for code generation” on page 8-4

“Identify questionable blocks within the specified system” on page 8-6
“Check for model reference configuration mismatch” on page 8-7

“Check the hardware implementation” on page 8-8

“Identify questionable software environment specifications” on page 8-10
“Identify questionable code instrumentation (data I/0)” on page 8-12
“Check for blocks that have constraints on tunable parameters” on page 8-13
“Identify questionable subsystem settings” on page 8-15

“Identify blocks that generate expensive saturation and rounding code”
on page 8-16

“Check sample times and tasking mode” on page 8-17

“Identify questionable fixed-point operations” on page 8-18

Real-Time Workshop Checks

Real-Time Workshop Overview

Use Real-Time Workshop Model Advisor checks to configure your model for
code generation.

See Also

¢ Consulting Model Advisor
¢ Simulink Model Advisor Check Reference

e Simulink Verification and Validation Model Advisor Check Reference

8-3

8 Model Advisor Checks

Check solver for code generation

Check model solver and sample time configuration settings.

Description

Incorrect configuration settings can stop Real-Time Workshop from generating
code. Underspecifying sample times can lead to undesired results. Avoid
generating code that might corrupt data or produce unpredictable behavior.

Results and Recommended Actions

Condition

The solver type is set incorrectly for
model level code generation.

Multitasking diagnostic options are
not set to error.

Recommended Action

Set Configuration Parameters >
Solver >

¢ Type to Fixed-step

® Solver to discrete (no
continuous states)

Set Configuration Parameters >
Diagnostics >

e Sample Time > Multitask
conditionally executed
subsystem to error

e Sample Time > Multitask rate
transition to error

¢ Data Validity > Multitask data
store to error

Tips

You do not have to modify the solver settings to generate code from a
subsystem. Real-Time Workshop Embedded Coder automatically changes
Solver type to fixed-step when you select Real-Time Workshop > Build
Subsystem or Real-Time Workshop > Generate S-Function from the

subsystem context menu.

Real-Time Workshop Checks

See Also

¢ “Adjusting Simulation Configuration Parameters for Code Generation”

¢ “Executing Multitasking Models”

8 Model Advisor Checks

8-6

Identify questionable blocks within the specified
system

Identify blocks not supported by code generation or not recommended for
deployment.

Description

Real-Time Workshop generates code only for the blocks that it supports. Some
blocks are not recommended for production code deployment.

Results and Recommended Actions

Condition Recommended Action

A block is not supported by Remove the specified block from the

Real-Time Workshop. model or replace the block with the
recommended block.

A block is not recommended for Remove the specified block from the

production code deployment. model or replace the block with the

recommended block.

Check for Gain blocks whose value Replace Gain blocks with Signal
equals 1. Conversion blocks.

See Also
“Requirements and Restrictions for ERT-Based Simulink Models”

Real-Time Workshop Checks

Check for model reference configuration mismatch

Identify referenced model configuration parameter settings that do not match
the top-level model configuration parameter settings.

Description

Real-Time Workshop cannot generate code for top-level models that contain
referenced models with different, incompatible configuration parameter
settings.

Results and Recommended Actions

Condition Recommended Action

The top-level model and the Modify the specified Configuration
referenced model have inconsistent =~ Parameters settings.
configuration parameter settings.

See Also
Model Referencing Configuration Parameter Requirements

8 Model Advisor Checks

Check the hardware implementation
Identify inconsistent or underspecified hardware implementation settings

Description

Simulink and Real-Time Workshop require two sets of target specifications.
The first set describes the final intended production target. The second
set describes the currently selected target. If the configurations do not
match, Real-Time Workshop generates extra code to emulate the behavior
of the production target. Inconsistencies or underspecification of hardware
attributes can lead to nonoptimal results.

Results and Recommended Actions

Condition

Your system target file is grt.tlc.

Hardware implementation
parameters are not set to
recommended values.

Hardware implementation
Embedded Hardware settings do
not match Emulation Hardware
settings.

Recommended Action

Use an ERT-based target to generate
final production code.

Specify the following Configuration
Parameters > Hardware
Implementation parameters

to the recommended values:

e Number of bits
¢ Byte ordering

® Signed integer division
rounding

Select the Configuration
Parameters > Hardware
Implementation > None check
box and configure the Emulation
hardware settings.

Limitations

A Real-Time Workshop Embedded Coder license is required to use an

ERT-based target.

Real-Time Workshop Checks

See Also
Making GRT-Based Targets ERT-Compatible

8-9

8 Model Advisor Checks

8-10

Identify questionable software environment

specifications

Identify questionable software environment settings.

Description

® Support for some software environment settings can lead to inefficient code

generation and nonoptimal results.

¢ Industry standards for C, such as ISO® and MISRA®, require identifiers to
be unique within the first 31 characters.

¢ Stateflow charts with weak Simulink I/O data types lead to inefficient code.

Results and Recommended Actions

Condition

The maximum identifier length does

not conform with industry standards
for C.

Real-Time Workshop Interface
parameters are not set to
recommended values.

Recommended Action

Set the Configuration Parameters
> Real-Time Workshop >
Interface > Maximum identifier
length parameter to 31 characters.

Set the following Configuration
Parameters > Real-Time
Workshop > Interface parameters
to the recommended values:

¢ Support: continuous time

® Support: non-finite numbers

® Support: non-inlined
S-functions

* Generate scalar inlined
parameters

Real-Time Workshop Checks

Condition Recommended Action

Real-Time Workshop Symbols Set the Configuration Parameters

parameters are not set to > Real-Time Workshop > Symbols

recommended values. > Generate scalar inlined
parameters as parameter to
Macros.

The model contains Stateflow charts Select the Stateflow chart property

with weak Simulink I/O data type Use Strong Data Typing with

specifications. Simulink I/0. You might need to
adjust the data types in your model
after selecting the property.

Limitations
A Stateflow license is required when using Stateflow charts.

See Also
“Strong Data Typing with Simulink I/O”

8-11

8 Model Advisor Checks

Identify questionable code instrumentation (data 1/0)

Identify questionable code instrumentation.

Description

¢ Instrumentation of the generated code can cause nonoptimal results.

¢ Test points require global memory and are not optimal for production code
generation.

Results and Recommended Actions

Condition Recommended Action

Interface parameters are not set to Set the Configuration Parameters

recommended values. > Real-Time Workshop >
Interface parameters to the
recommended values.

Blocks generate assertion code. Set the Configuration Parameters
> Diagnostics > Data Validity
> Model Verification block
enabling parameter to Disable
All on a block-by-block basis or

globally.
Block output signals have one or Remove test points from the specified
more test points. block output signals. For each signal,

in the Signal Properties dialog box,
clear the Test point check box.

8-12

Real-Time Workshop Checks

Check for blocks that have constraints on tunable
parameters
Identify blocks with constraints on tunable parameters.

Description

Lookup Table and Lookup Table (2-D) blocks have strict constraints when
they are tunable. If you violate lookup table block restrictions, the generated
code produces wrong answers.

8-13

8 Model Advisor Checks

8-14

Results and Recommended Actions

Condition

Lookup Table blocks have tunable
parameters.

Lookup Table (2-D) blocks have
tunable parameters.

Recommended Action

When tuning parameters during

simulation or when running the

generated code, you must:

¢ Preserve monotonicity of the
setting for the Vector of input
values parameter.

® Preserve the number and location
of zero values that you specify
for Vector of input values
and Vector of output values
parameters if you specify multiple
zero values for the Vector of
input values parameter.

When tuning parameters during

simulation or when running the

generated code, you must:

¢ Preserve monotonicity of the
setting for the Row index input
values and Column index of
input values parameters.

® Preserve the number and location
of zero values that you specify
for Row index input values,
Column index of input values,
and Vector of output values
parameters if you specify multiple
zero values for the Row index
input values or Column index
of input values parameters.

See Also
Lookup Table block

Real-Time Workshop Checks

Identify questionable subsystem settings
Identify questionable subsystem block settings.

Description
Subsystem blocks implemented as void/void functions in the generated code
use global memory to store the subsystem I/0.

Results and Recommended Actions

Condition Recommended Action
Subsystem blocks have the Set the Subsystem Parameters
Subsystem Parameters > > Real-Time Workshop system
Real-Time Workshop system code parameter to Auto.

code option set to Function.

See Also
Subsystem block

8-15

8 Model Advisor Checks

8-16

Identify blocks that generate expensive saturation

and rounding code

Check for blocks that generate expensive saturation or rounding code.

Description

® Setting the Saturate on integer overflow parameter can produce
condition-checking code that your application might not require.

® Generated rounding code is inefficient because of Round integer
calculations toward parameter setting.

Results and Recommended Actions

Condition

Blocks generate expensive saturation
code.

Generated code is inefficient.

Recommended Action

Check each block to ensure that
your application requires setting
Function Block Parameters >
Signal Attributes > Saturate

on integer overflow. Otherwise,
clear the Saturate on integer
overflow parameter to ensure the
most efficient implementation of the
block in the generated code.

Set the Function Block
Parameters > Round integer
calculations toward parameter to
the recommended value.

Real-Time Workshop Checks

Check sample times and tasking mode
Set up the sample time and tasking mode for your system.

Description

Incorrect tasking mode can result in inefficient code execution or incorrect

generated code.

Results and Recommended Actions

Condition

The model represents a multirate
system but is not configured for
multitasking.

The model is configured for
multitasking, but multitasking is not
appropriate for the target hardware.

Recommended Action

Set the Configuration Parameters
> Solver > Tasking mode for
periodic sample times parameter
as recommended.

Set the Configuration Parameters
> Solver > Tasking mode for
periodic sample times parameter
to SingleTasking, or change the
Configuration Parameters >
Hardware Implementation
settings.

See Also

“Single-Tasking and Multitasking Execution Modes”

8-17

8 Model Advisor Checks

8-18

Identify questionable fixed-point operations
Identify fixed-point operations that can lead to nonoptimal results.

Description
The following operations can lead to nonoptimal results:

¢ Division
= The rounding behavior of signed integer division is not fully specified by

C language standards. Therefore, the generated code for division is large
to ensure bit-true agreement between simulation and code generation.

= Integer division generated code contains protection against arithmetic
exceptions such as division by zero, INT_MIN/-1, and LONG_MIN/-1. If
you construct models making it impossible for exception triggering input
combinations to reach a division operation, the protection code generated
as part of the division operation is redundant.

= The index search method Evenly-spaced points requires a division
operation, which can be computationally expensive.

e Multiplication

= Product blocks are configured to do more than one division operation.
Multiplying all the denominator terms together first, and then
computing only one division operation improves accuracy and speed in
floating-point and fixed-point calculations.

= Product blocks are configured to do more than one multiplication or
division operation. Using several blocks, with each block performing
one multiplication or one division operation, allows you to control the
data type and scaling used for intermediate calculations. The choice of
data types for intermediate calculations affects precision, range errors,
and efficiency.

= Blocks that have the Saturate on integer overflow parameter
selected, and have an ideal multiplication product with a larger integer
size than the target integer size, must determine the ideal product in
generated C code. The C code required to do this multiplication is large
and slow.

Real-Time Workshop Checks

= Blocks with relative scaling of inputs and outputs must determine the
ideal product in the generated C code. The C code required to do this
multiplication is large and slow.

= Blocks that multiply signals with nonzero bias require extra steps to
implement the multiplication. Inserting Data Type Conversion blocks
remove the biases, and allow you to control data type and scaling for
intermediate calculations. The conversion is done once and all blocks in
the subsystem benefit from simpler, bias-free math.

= Blocks are multiplying signals with mismatched fractional slopes.
This mismatch causes the overall operation to involve two multiply
instructions.

= Real-Time Workshop generates a reciprocal operation followed by a
multiply operation for Product blocks that have a divide operation for
the first input, and a multiply operation for the second input. If you
reverse the inputs so that the multiplication occurs first and the division
occurs second, Real-Time Workshop generates a single division operation
for both inputs.

= An input with an invariant constant value is used as the denominator
in an online division operation. If the operation is changed to
multiplication, and the invariant input is replaced by its reciprocal, then
the division is done offline and the online operation is multiplication.
This leads to faster and smaller generated code.

Addition

= For better accuracy and efficiency, nonzero bias terms are handled
separately and are not included in the conversion from input to output.
The ranges given for the input and output exclude their biases.

= Sum blocks can have a range error before an addition or subtraction
operation. For simplicity of design, the Sum block always casts each
input to the output data type and scaling before performing addition or
subtraction. The input range is different than the output range, so a
range error can occur when casting the input to the output data type.

= A Sum block has an input with a fractional slope that does not equal the
fractional slope of the output. This mismatch requires the Sum block to
multiply the input by the net slope adjustment each time the input is
converted to the output data type and scaling.

8-19

8 Model Advisor Checks

= The net sum of the Sum block input biases does not equal the bias of the
output. The generated code includes one extra addition or subtraction
instruction to correctly account for the net bias adjustment.

¢ Using Relational Operator blocks

= The data types of the Relational Operator block inputs are not the same.
A conversion operation is required every time the block is executed. If
one of the inputs is invariant, then changing the data type and scaling of
the invariant input to match the other input improves the efficiency of
the model.

= The Relational Operator block inputs have different ranges, resulting in
a range error when casting, and a precision loss each time a conversion
is performed. You can insert Data Type Conversion blocks before the
Relational Operator block to convert both inputs to a common data type
that has sufficient range and precision to represent each input, making
the relational operation error-free.

= The inputs of the Relational Operator block have different fractional
slopes. The mismatch causes the Relational Operator block to require
a multiply operation each time the input with lesser positive range is
converted to the data type and scaling of the input with greater positive
range.

¢ Using MinMax blocks

= The input and output of the MinMax block have different data types. A
conversion operation is required every time the block is executed. The
model is more efficient with the same data types.

= The input of the MinMax block is converted to the data type and scaling
of the output before performing a relational operation, resulting in a
range error when casting, or a precision loss each time a conversion is
performed.

= The input of the MinMax block has a different fractional slope than the
output. This mismatch causes the MinMax block to require a multiply
operation each time the input is converted to the data type and scaling of
the output.

® Discrete-Time Integerator blocks have a complicated initial condition
setting. The initial condition for the Discrete-Time Integrator blocks are

8-20

Real-Time Workshop Checks

used to initialize the state and output. As a result, the output equation
generates excessive code and an extra global variable is required.

Results and Recommended Actions

Condition Recommended Action
Integer division generated code is Set the Configuration Parameters
large. > Hardware Implementation >

Signed integer division rounds
to parameter to the recommended
value.

Protection code generated as part of Verify that your model cannot cause

the division operation is redundant. exceptions in division operations and
then remove redundant protection
code by setting the Configuration
Parameters > Optimization
> Remove code that protects
against division arithmetic
exceptions parameter.

Generated code is inefficient. Set the Function Block
Parameters > Round integer
calculations toward parameter to
the recommended value.

Lookup table input data is not evenly If the data is nontunable, adjust
spaced. the table to be evenly spaced. See
fixpt_looki1_func_approx.

Lookup table input data is not evenly If the data is nontunable, adjust
spaced when quantized, but it is very the table to be evenly spaced. See
close to being evenly spaced. fixpt_evenspace_cleanup.

Lookup table input data is evenly If the data is nontunable,

spaced, but the spacing is not a reimplement the table with

power of 2. even power-of-2 spacing. See
fixpt_look1_func_approx.

8-21

8 Model Advisor Checks

8-22

Condition

Index search method is set to
Evenly-spaced points.

Blocks require cumbersome
multiplication.

Blocks multiply signals with nonzero
bias.

Product blocks are multiplying
signals with mismatched fractional
slopes.

Product blocks are configured to do
multiple division operations.

Product blocks are configured to
do many multiplication or division
operations.

Product blocks are configured with a
divide operation for the first input
and a multiply operation for the
second input.

An input with an invariant constant
value is used as the denominator in
an online division operation.

A Sum block has a different input
and output data type range.

Recommended Action

Specify a different Function Block
Parameters > Index search
method to avoid the division
operation.

Restrict multiplication operations:
¢ So the product integer size is no
larger than the target integer size.

e To the recommended size.

Insert a Data Type Conversion block
before and after the block containing
the multiplication operation.

Change the scaling of the output
so that its fractional slope is the
product of the input fractional slopes.

Multiply all the denominator terms
together, and then do a single
division using cascading Product
blocks.

Split the operations across several
blocks, with each block performing
one multiplication or one division
operation.

Reverse the inputs so the multiply
operation occurs first and the
division operation occurs second.

Change the operation to
multiplication, and replace the
invariant input by its reciprocal.

Insert a Data Type Conversion block
before and after the Sum block.

Real-Time Workshop Checks

Condition

A Sum block has an input with a
fractional slope that does not equal
the fractional slope of the output.

The net sum of the Sum block input
biases does not equal the bias of the
output.

The inputs of the Relational
Operator block have different data

types.

The inputs of the Relational
Operator block have different
fractional slopes.

The input and output of the MinMax
block have different data types.

The input of the MinMax block has
a different fractional slope than the
output.

The initial condition of the
Discrete-Time Integrator block is
used to initialize both the state and
the output.

Recommended Action

Change the scaling of the input or
output.

Change the bias of the output,
making the net bias adjustment
ZEero.

¢ Change the data type and scaling
of the invariant input to match
other inputs.

¢ Insert Data Type Conversion
blocks before the Relational
Operator block to convert both
inputs to a common data type.

Change the scaling of either input.

Change the data type of the input or
output.

Change the scaling of the input or
the output.

Set the Function Block
Parameters > Use initial
condition as initial and reset
value for parameter to State only
(most efficient).

Limitations

A Simulink Fixed Point license is required to generate fixed-point code.

See Also

® Lookup Table block

8-23

8 Model Advisor Checks

* Remove code that protects against division arithmetic exceptions

8-24

A

addCompileFlags function 2-2
addDefines function 2-6
addIncludeFiles function 2-9
addIncludePaths function 2-12
addLinkFlags function 2-15
addLinkObjects function 2-18
addSourceFiles function 2-23
addSourcePaths function 2-26
Async Interrupt block 5-2
automatic C MEX generation parameters
Embedded MATLAB Coder 7-14

blocks
Async Interrupt 5-2
Model Header
reference 5-8
Model Source
reference 5-9
Protected RT 5-10
RTW S-Function 5-11
System Derivatives 5-13
System Disable 5-14
System Enable 5-16
reference 5-15
System Outputs 5-17
System Start 5-18
System Terminate 5-19
System Update 5-20
Task Sync 5-21
Unprotected RT 5-25
blocks, Simulink
support for 3-1

C

C MEX generation parameters

Embedded MATLAB Coder
custom code 7-17
general 7-15
General pane
Enable debug build 7-16
code generation parameters
Embedded MATLAB Coder 7-2
custom code 7-6
debug 7-9
general 7-3
generate code only 7-13
interface 7-11
symbols 7-4
compiler options
adding to build information 2-2
configuration parameters
code generation 6-203
factory defaults 6-197
impacts of settings 6-197
pane
Base task priority 6-184
Create new model 6-167
Download to VxWorks target 6-182
External mode 6-187
StethoScope 6-180
Task stack size 6-186
Use value for tunable parameters 6-168
real-time workshop (comments)
include comments 6-37
show eliminated blocks 6-39
Simulink block comments 6-38
verbose comments for Simulink global
storage class 6-40
Real-Time Workshop (comments) 6-36

Index-1

Index

real-time workshop (custom code) real-time workshop (interface)
header file 6-88 interface 6-144
include directories 6-91 mat-file variable name modifier 6-142
initialize function 6-89 6-177
libraries 6-93 parameters in C API 6-147
source file 6-87 signals in C API 6-146
source files 6-92 static memory allocation 6-152
terminate function 6-90 static memory buffer size 6-154
Real-Time Workshop (custom code) target function library 6-106 6-172
pane 6-86 transport layer 6-148
real-time workshop (debug) utility function 6-108 6-174
enable TLC assertion 6-102 Real-Time Workshop (interface)
profile TLC 6-99 mex-file arguments 6-150
retain .rtw file 6-98 Real-Time Workshop (interface) pane 6-105
start TLC coverage when generating real-time workshop (symbols)
code 6-101 maximum identifier length 6-73
start TLC debugger when generating Real-Time Workshop (symbols) pane 6-54
code 6-100 real-time workshop (tornado target)
verbose build 6-97 mex-file arguments 6-191
Real-Time Workshop (debug) pane 6-96 static memory allocation 6-193
real-time workshop (general) static memory buffer size 6-195
build/generate code 6-33 transport layer 6-189
generate code only 6-31 Real-Time Workshop pane 6-166 6-171
generate HTML report 6-9 Real-Time Workshop pane (Tornado)
generate makefile 6-23 code format 6-179
language 6-8 Real-Time Workshop pane: general tab) 6-5
launch report automatically 6-11 RSim target pane
make command 6-25 parameter loading 6-159
template makefile 6-27 Solver selection 6-160
Real-Time Workshop (general) storage classes 6-162
Compiler optimization level 6-18 RSim Target pane 6-158
Custom compiler optimization flags 6-20 Configuration Parameters dialog box
system target file 6-6 Comments pane
TLC options 6-21 Custom comments 6-44

Custom comments function 6-46
Requirements in block comments 6-50
Simulink block descriptions 6-41
Simulink data object descriptions 6-43
Stateflow object descriptions 6-48

Index-2

Index

Interface pane D

Configure Functions 6-135 debugging

Create Simulink (S-Function) and configuration parameter settings 6-197
block 6-136 derivatives

Enable portable word sizes 6-138 in custom code 5-13

Generate reusable code 6-126 disable code

GRT compatible call interface 6-120 in custom code 5-14

MAT-file logging 6-140 6-175 documentation

Pass root-level I/O as 6-131 generated code 2-62

Reusable code error diagnostic 6-129
Single output/update function 6-122

Support absolute time 6-111 E
Support complex numbers 6-117 efficiency
Support continuous time 6-115 and configuration parameter settings 6-197
Support floating-point numbers 6-109 Embedded MATLAB Coder
Support non-finite numbers 6-113 automatic C MEX generation
Support non-inlined S-functions 6-118 parameters 7-14
Suppress error status in real-time model C MEX generation parameters
data structure 6-133 custom code 7-17
Terminate function required 6-124 Enable debug build 7-16
Real-Time Workshop pane general 7-15
block-to-code highlighting 6-15 code generation parameters 7-2
code-to-block highlighting 6-13 custom code 7-6
Configure 6-17 debug 7-9
Ignore custom storage classes 6-29 general 7-3
Symbols pane generate code only 7-13
Constant macros 6-69 interface 7-11
#define naming 6-82 symbols 7-4
Field name of global types 6-60 hardware implementation parameters 7-21
Generate scalar inlined parameter invoking 2-29
as 6-75 emlc function 2-29
Global types 6-57 enable code
Local block output variables 6-67 in custom code 5-15
Local temporary variables 6-65 extensions, file. See file extensions
M-function 6-78
Minimum mangle length 6-71 F
Parameter naming 6-80
Signal naming 6-76 file extensions
Simulink block descriptions 6-55 updating in build information 2-67
Subsystem methods 6-62 file separator

Index-3

Index

changing in build information 2-70
file types. See file extensions
findIncludeFiles function 2-38

G

getCompileFlags function 2-40
getDefines function 2-42
getIncludeFiles function 2-46
getIncludePaths function 2-49
getLinkFlags function 2-51
getSourceFiles function 2-54
getSourcePaths function 2-57

H

hardware implementation parameters
Embedded MATLAB Coder 7-21
header files
finding for inclusion in build information
object 2-38

include files
adding to build information 2-9
finding for inclusion in build information
object 2-38
getting from build information 2-46
include paths
adding to build information 2-12
getting from build information 2-49
initialization code
in custom code 5-16
interrupt service routines
creating 5-2

L
link objects

Index-4

adding to build information 2-18
link options

adding to build information 2-15

getting from build information 2-51

M

macros
defining in build information 2-6
getting from build information 2-42
makefile
generating and executing for system 2-40
model header
in custom code 5-8
Model Header block
reference 5-8
Model Source block
reference 5-9
models
parameters for configuring 6-203

o

outputs code
in custom code 5-17

P

packNGo function 2-60
parameter structure

getting 2-64
parameters

for configuring model code generation and

targets 6-203

paths

updating in build information 2-67
project files

packaging for relocation 2-60
Protected RT block 5-10

Index

rate transitions
protected 5-10
unprotected 5-25
rsimgetrtp function 2-64
RTW S-Function block 5-11
rtwreport function 2-62

S

S-function target
generating 5-11
safety precautions
and configuration parameter settings 6-197
separator, file
changing in build information 2-70
source code
in custom code 5-9
source files
adding to build information 2-23
getting from build information 2-54
source paths
adding to build information 2-26
getting from build information 2-57
startup code
in custom code 5-18
System Derivatives block 5-13

System Disable block 5-14
System Enable block 5-15
System Initialize block 5-16
System Outputs block 5-17
System Start block 5-18
System Terminate block 5-19
System Update block 5-20

T

targets
parameters for configuring 6-203
task function
creating 5-21
Task Sync block 5-21
termination code
in custom code 5-19
traceability
and configuration parameter settings 6-197

U

Unprotected RT block 5-25
update code

in custom code 5-20
updateFilePathsAndExtensions function 2-67
updateFileSeparator function 2-70

Index-5

	toc
	Functions — By Category
	Build Information
	Embedded MATLAB Coder
	Project Documentation
	Rapid Simulation
	Target Language Compiler Library

	Functions — Alphabetical List
	Simulink Block Support
	Blocks — By Category
	Custom Code
	Interrupt Templates
	S-Function Target
	VxWorks

	Blocks — Alphabetical List
	Configuration Parameters
	Real-Time Workshop Pane: General
	General Tab Overview
	See Also

	System target file
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Language
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Generate HTML report
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Launch report automatically
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code-to-block highlighting
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Block-to-code highlighting
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configure
	Dependency
	See Also

	Compiler optimization level
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Custom compiler optimization flags
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	TLC options
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Generate makefile
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Make command
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Template makefile
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Ignore custom storage classes
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate code only
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Build/Generate code
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Real-Time Workshop Pane: Comments
	Comments Tab Overview
	Include comments
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Simulink block comments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Show eliminated blocks
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Verbose comments for SimulinkGlobal storage class
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Simulink block descriptions
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Simulink data object descriptions
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Custom comments (MPT objects only)
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Custom comments function
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Stateflow object descriptions
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Requirements in block comments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Real-Time Workshop Pane: Symbols
	Symbols Tab Overview
	See Also

	Global variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Global types
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Field name of global types
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Subsystem methods
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Local temporary variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Local block output variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Constant macros
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Minimum mangle length
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum identifier length
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Generate scalar inlined parameter as
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Signal naming
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	M-function
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Parameter naming
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	#define naming
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Real-Time Workshop Pane: Custom Code
	Custom Code Tab Overview
	Configuration
	See Also

	Source file
	Settings
	Command-Line Information
	Recommended Settings

	Header file
	Settings
	Command-Line Information
	Recommended Settings

	Initialize function
	Settings
	Command-Line Information
	Recommended Settings

	Terminate function
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Include directories
	Settings
	Command-Line Information
	Recommended Settings

	Source files
	Settings
	Tip
	Command-Line Information
	Recommended Settings

	Libraries
	Settings
	Command-Line Information
	Recommended Settings

	Real-Time Workshop Pane: Debug
	Debug Tab Overview
	See Also

	Verbose build
	Settings
	Command-Line Information
	Recommended Settings

	Retain .rtw file
	Settings
	Command-Line Information
	Recommended Settings

	Profile TLC
	Settings
	Command-Line Information
	Recommended Settings

	Start TLC debugger when generating code
	Settings
	Tips
	Command-Line Information
	Recommended Settings

	Start TLC coverage when generating code
	Settings
	Tip
	Command-Line Information
	Recommended Settings

	Enable TLC assertion
	Settings
	Command-Line Information
	Recommended Settings

	Real-Time Workshop Pane: Interface
	Interface Tab Overview
	See Also

	Target function library
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Utility function generation
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Support: floating-point numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: absolute time
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Support: non-finite numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: continuous time
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Support: complex numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: non-inlined S-functions
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	GRT compatible call interface
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Single output/update function
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Terminate function required
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate reusable code
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Reusable code error diagnostic
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Pass root-level I/O as
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Suppress error status in real-time model data structure
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configure Functions
	Dependency
	See Also

	Create Simulink (S-Function) block
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Enable portable word sizes
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file logging
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file variable name modifier
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Interface
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signals in C API
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Parameters in C API
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Transport layer
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MEX-file arguments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Static memory allocation
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Static memory buffer size
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Real-Time Workshop Pane: RSim Target
	RSim Target Tab Overview
	Configuration
	See Also

	Enable RSim executable to load parameters from a MAT-file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Solver selection
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Force storage classes to AUTO
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Real-Time Workshop Pane: Real-Time Workshop S-Function Code Gene
	Real-Time Workshop S-Function Code Generation Options Tab Overvi
	Configuration
	See Also

	Create new model
	Settings
	Command-Line Information
	See Also

	Use value for tunable parameters
	Settings
	Command-Line Information
	See Also

	Real-Time Workshop Pane: Tornado Target
	Tornado Target Tab Overview
	Configuration
	See Also

	Target function library
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Utility function generation
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file logging
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file variable name modifier
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Format
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	StethoScope
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Download to VxWorks target
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Base task priority
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Task stack size
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	External mode
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Transport layer
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MEX-file arguments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Static memory allocation
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Static memory buffer size
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Parameter Reference
	Recommended Settings Summary
	Parameter Command-Line Information Summary

	Embedded MATLAB Coder Configuration Parameters
	Real-Time Workshop Dialog Box for Embedded MATLAB Coder
	Real-Time Workshop Dialog Box Overview
	Displaying the Dialog Box
	See Also

	General Tab
	Parameters

	Symbols Tab
	Parameters

	Custom Code Tab
	Configuration
	Parameters

	Debug Tab
	Parameters

	Interface Tab
	Parameters

	Generate code only

	Automatic C MEX Generation Dialog Box for Embedded MATLAB Coder
	Automatic C MEX Generation Dialog Box Overview
	Displaying the Dialog Box
	See Also

	General Tab
	Parameters
	Enable debug build

	Custom Code Tab
	Configuration
	Parameters

	Hardware Implementation Dialog Box for Embedded MATLAB Coder
	Hardware Implementation Parameters Dialog Box Overview
	Displaying the Dialog Box
	See Also

	Hardware Implementation Parameters

	Model Advisor Checks
	Real-Time Workshop Checks
	Real-Time Workshop Overview
	See Also

	Check solver for code generation
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify questionable blocks within the specified system
	Description
	Results and Recommended Actions
	See Also

	Check for model reference configuration mismatch
	Description
	Results and Recommended Actions
	See Also

	Check the hardware implementation
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Identify questionable software environment specifications
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Identify questionable code instrumentation (data I/O)
	Description
	Results and Recommended Actions

	Check for blocks that have constraints on tunable parameters
	Description
	Results and Recommended Actions
	See Also

	Identify questionable subsystem settings
	Description
	Results and Recommended Actions
	See Also

	Identify blocks that generate expensive saturation and rounding
	Description
	Results and Recommended Actions

	Check sample times and tasking mode
	Description
	Results and Recommended Actions
	See Also

	Identify questionable fixed-point operations
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Index

	tables
	Additional Math and Discrete: Additional Discrete
	Additional Math and Discrete: Increment/Decrement
	Continuous
	Discontinuities
	Discrete
	Logic and Bit Operations
	Lookup Tables
	Math Operations
	Model Verification
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined
	Support Notes
	Mapping of Application Requirements to Configuration Parameters

